YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Influence of Boundary Layer Processes on the Diurnal Variation of the Climatological Near-Surface Wind Speed Probability Distribution over Land

    Source: Journal of Climate:;2012:;volume( 025 ):;issue: 018::page 6441
    Author:
    He, Yanping
    ,
    McFarlane, Norman A.
    ,
    Monahan, Adam H.
    DOI: 10.1175/JCLI-D-11-00321.1
    Publisher: American Meteorological Society
    Abstract: nowledge of the diurnally varying land surface wind speed probability distribution is essential for surface flux estimation and wind power management. Global observations indicate that the surface wind speed probability density function (PDF) is characterized by a Weibull-like PDF during the day and a nighttime PDF with considerably greater skewness. Consideration of long-term tower observations at Cabauw, the Netherlands, indicates that this nighttime skewness is a shallow feature connected to the formation of a stably stratified nocturnal boundary layer. The observed diurnally varying vertical structure of the leading three climatological moments of near-surface wind speed (mean, standard deviation, and skewness) and the wind power density at the Cabauw site can be successfully simulated using the single-column version of the Canadian Centre for Climate Modelling and Analysis (CCCma) fourth-generation atmospheric general circulation model (CanAM4) with a new semiempirical diagnostic turbulent kinetic energy (TKE) scheme representing downgradient turbulent transfer processes for cloud-free conditions. This model also includes a simple stochastic representation of intermittent turbulence at the boundary layer inversion. It is found that the mean and the standard deviation of wind speed are most influenced by large-scale ?weather? variability, while the shape of the PDF is influenced by the intermittent mixing process. This effect is quantitatively dependent on the asymptotic flux Richardson number, which determines the Prandtl number in stable flows. High vertical resolution near the land surface is also necessary for realistic simulation of the observed fine vertical structure of wind speed distribution.
    • Download: (2.179Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Influence of Boundary Layer Processes on the Diurnal Variation of the Climatological Near-Surface Wind Speed Probability Distribution over Land

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4221773
    Collections
    • Journal of Climate

    Show full item record

    contributor authorHe, Yanping
    contributor authorMcFarlane, Norman A.
    contributor authorMonahan, Adam H.
    date accessioned2017-06-09T17:04:42Z
    date available2017-06-09T17:04:42Z
    date copyright2012/09/01
    date issued2012
    identifier issn0894-8755
    identifier otherams-79037.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221773
    description abstractnowledge of the diurnally varying land surface wind speed probability distribution is essential for surface flux estimation and wind power management. Global observations indicate that the surface wind speed probability density function (PDF) is characterized by a Weibull-like PDF during the day and a nighttime PDF with considerably greater skewness. Consideration of long-term tower observations at Cabauw, the Netherlands, indicates that this nighttime skewness is a shallow feature connected to the formation of a stably stratified nocturnal boundary layer. The observed diurnally varying vertical structure of the leading three climatological moments of near-surface wind speed (mean, standard deviation, and skewness) and the wind power density at the Cabauw site can be successfully simulated using the single-column version of the Canadian Centre for Climate Modelling and Analysis (CCCma) fourth-generation atmospheric general circulation model (CanAM4) with a new semiempirical diagnostic turbulent kinetic energy (TKE) scheme representing downgradient turbulent transfer processes for cloud-free conditions. This model also includes a simple stochastic representation of intermittent turbulence at the boundary layer inversion. It is found that the mean and the standard deviation of wind speed are most influenced by large-scale ?weather? variability, while the shape of the PDF is influenced by the intermittent mixing process. This effect is quantitatively dependent on the asymptotic flux Richardson number, which determines the Prandtl number in stable flows. High vertical resolution near the land surface is also necessary for realistic simulation of the observed fine vertical structure of wind speed distribution.
    publisherAmerican Meteorological Society
    titleThe Influence of Boundary Layer Processes on the Diurnal Variation of the Climatological Near-Surface Wind Speed Probability Distribution over Land
    typeJournal Paper
    journal volume25
    journal issue18
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-11-00321.1
    journal fristpage6441
    journal lastpage6458
    treeJournal of Climate:;2012:;volume( 025 ):;issue: 018
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian