YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulated Local and Remote Biophysical Effects of Afforestation over the Southeast United States in Boreal Summer

    Source: Journal of Climate:;2012:;volume( 025 ):;issue: 013::page 4511
    Author:
    Chen, Guang-Shan
    ,
    Notaro, Michael
    ,
    Liu, Zhengyu
    ,
    Liu, Yongqiang
    DOI: 10.1175/JCLI-D-11-00317.1
    Publisher: American Meteorological Society
    Abstract: fforestation has been proposed as a climate change mitigation strategy by sequestrating atmospheric carbon dioxide. With the goal of increasing carbon sequestration, a Congressional project has been planned to afforest about 18 million acres by 2020 in the Southeast United States (SEUS), the Great Lake states, and the Corn Belt states. However, biophysical feedbacks of afforestation have the potential to counter the beneficial climatic consequences of carbon sequestration. To assess the potential biophysical effects of afforestation over the SEUS, the authors designed a set of initial value ensemble experiments and long-term quasi-equilibrium experiments in a fully coupled Community Climate System Model, version 3.5 (CCSM3.5). Model results show that afforestation over the SEUS not only has a local cooling effect in boreal summer [June?August (JJA)] at short and long time scales but also induces remote warming over adjacent regions of the SEUS at long time scales. Precipitation, in response to afforestation, increases over the SEUS (local effect) and decreases over adjacent regions (remote effect) in JJA. The local surface cooling and increase in precipitation over SEUS in JJA are hydrologically driven by the changes in evapotranspiration and latent heat flux. The remote surface warming and decrease in precipitation over adjacent regions are adiabatically induced by anomalous subsidence. Our results suggest that the planned afforestation efforts should be developed carefully by taking account of short-term (local) and long-term (remote) biophysical effects of afforestation.
    • Download: (1.748Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulated Local and Remote Biophysical Effects of Afforestation over the Southeast United States in Boreal Summer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4221769
    Collections
    • Journal of Climate

    Show full item record

    contributor authorChen, Guang-Shan
    contributor authorNotaro, Michael
    contributor authorLiu, Zhengyu
    contributor authorLiu, Yongqiang
    date accessioned2017-06-09T17:04:41Z
    date available2017-06-09T17:04:41Z
    date copyright2012/07/01
    date issued2012
    identifier issn0894-8755
    identifier otherams-79033.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221769
    description abstractfforestation has been proposed as a climate change mitigation strategy by sequestrating atmospheric carbon dioxide. With the goal of increasing carbon sequestration, a Congressional project has been planned to afforest about 18 million acres by 2020 in the Southeast United States (SEUS), the Great Lake states, and the Corn Belt states. However, biophysical feedbacks of afforestation have the potential to counter the beneficial climatic consequences of carbon sequestration. To assess the potential biophysical effects of afforestation over the SEUS, the authors designed a set of initial value ensemble experiments and long-term quasi-equilibrium experiments in a fully coupled Community Climate System Model, version 3.5 (CCSM3.5). Model results show that afforestation over the SEUS not only has a local cooling effect in boreal summer [June?August (JJA)] at short and long time scales but also induces remote warming over adjacent regions of the SEUS at long time scales. Precipitation, in response to afforestation, increases over the SEUS (local effect) and decreases over adjacent regions (remote effect) in JJA. The local surface cooling and increase in precipitation over SEUS in JJA are hydrologically driven by the changes in evapotranspiration and latent heat flux. The remote surface warming and decrease in precipitation over adjacent regions are adiabatically induced by anomalous subsidence. Our results suggest that the planned afforestation efforts should be developed carefully by taking account of short-term (local) and long-term (remote) biophysical effects of afforestation.
    publisherAmerican Meteorological Society
    titleSimulated Local and Remote Biophysical Effects of Afforestation over the Southeast United States in Boreal Summer
    typeJournal Paper
    journal volume25
    journal issue13
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-11-00317.1
    journal fristpage4511
    journal lastpage4522
    treeJournal of Climate:;2012:;volume( 025 ):;issue: 013
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian