YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    North Australian Sea Surface Temperatures and the El Niño–Southern Oscillation in Observations and Models

    Source: Journal of Climate:;2012:;volume( 025 ):;issue: 014::page 5011
    Author:
    Catto, Jennifer L.
    ,
    Nicholls, Neville
    ,
    Jakob, Christian
    DOI: 10.1175/JCLI-D-11-00311.1
    Publisher: American Meteorological Society
    Abstract: nterannual variations in the sea surface temperature (SST) to the north of Australia are strongly linked to variations in Australian climate, including winter rainfall and tropical cyclone numbers. The north Australian SSTs are also closely linked to ENSO and tropical Pacific SSTs, with the relationship exhibiting a strong seasonal cycle. Credible predictions of Australian climate change therefore depend on climate models being able to represent ENSO and its connection to north Australian SSTs, the topic of this study.First, the observational datasets of the Met Office Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) and the NOAA Extended Reconstructed Sea Surface Temperature (ERSST) are used to document the links between the Niño-3.4 index and a north Australian SST index, and the temporal evolution of north Australian SSTs during ENSO events. During austral autumn, the correlation between Niño-3.4 SST and north Australian SST is positive, while in austral spring it is strongly negative. During El Niño events, the north Australian SST anomalies become negative in the austral spring preceding the development of the positive Niño-3.4 SST anomalies.The coupled models participating in the Coupled Model Intercomparison Project phase 3 (CMIP3) are evaluated in terms of this temporal evolution of Niño-3.4 SST and the relationship to north Australian SST for the twentieth-century simulations. Some of the models perform very well, while some do not capture the seasonal cycle of correlations at all. The way in which these relationships may change in the future is examined using the A2 emissions scenario in those models that do a reasonable job of capturing the present-day observed relationship, and very little change is found.
    • Download: (2.998Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      North Australian Sea Surface Temperatures and the El Niño–Southern Oscillation in Observations and Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4221763
    Collections
    • Journal of Climate

    Show full item record

    contributor authorCatto, Jennifer L.
    contributor authorNicholls, Neville
    contributor authorJakob, Christian
    date accessioned2017-06-09T17:04:38Z
    date available2017-06-09T17:04:38Z
    date copyright2012/07/01
    date issued2012
    identifier issn0894-8755
    identifier otherams-79028.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221763
    description abstractnterannual variations in the sea surface temperature (SST) to the north of Australia are strongly linked to variations in Australian climate, including winter rainfall and tropical cyclone numbers. The north Australian SSTs are also closely linked to ENSO and tropical Pacific SSTs, with the relationship exhibiting a strong seasonal cycle. Credible predictions of Australian climate change therefore depend on climate models being able to represent ENSO and its connection to north Australian SSTs, the topic of this study.First, the observational datasets of the Met Office Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) and the NOAA Extended Reconstructed Sea Surface Temperature (ERSST) are used to document the links between the Niño-3.4 index and a north Australian SST index, and the temporal evolution of north Australian SSTs during ENSO events. During austral autumn, the correlation between Niño-3.4 SST and north Australian SST is positive, while in austral spring it is strongly negative. During El Niño events, the north Australian SST anomalies become negative in the austral spring preceding the development of the positive Niño-3.4 SST anomalies.The coupled models participating in the Coupled Model Intercomparison Project phase 3 (CMIP3) are evaluated in terms of this temporal evolution of Niño-3.4 SST and the relationship to north Australian SST for the twentieth-century simulations. Some of the models perform very well, while some do not capture the seasonal cycle of correlations at all. The way in which these relationships may change in the future is examined using the A2 emissions scenario in those models that do a reasonable job of capturing the present-day observed relationship, and very little change is found.
    publisherAmerican Meteorological Society
    titleNorth Australian Sea Surface Temperatures and the El Niño–Southern Oscillation in Observations and Models
    typeJournal Paper
    journal volume25
    journal issue14
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-11-00311.1
    journal fristpage5011
    journal lastpage5029
    treeJournal of Climate:;2012:;volume( 025 ):;issue: 014
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian