YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels

    Source: Journal of Climate:;2012:;volume( 025 ):;issue: 011::page 3715
    Author:
    Zelinka, Mark D.
    ,
    Klein, Stephen A.
    ,
    Hartmann, Dennis L.
    DOI: 10.1175/JCLI-D-11-00248.1
    Publisher: American Meteorological Society
    Abstract: his study proposes a novel technique for computing cloud feedbacks using histograms of cloud fraction as a joint function of cloud-top pressure (CTP) and optical depth (τ). These histograms were generated by the International Satellite Cloud Climatology Project (ISCCP) simulator that was incorporated into doubled-CO2 simulations from 11 global climate models in the Cloud Feedback Model Intercomparison Project. The authors use a radiative transfer model to compute top of atmosphere flux sensitivities to cloud fraction perturbations in each bin of the histogram for each month and latitude. Multiplying these cloud radiative kernels with histograms of modeled cloud fraction changes at each grid point per unit of global warming produces an estimate of cloud feedback. Spatial structures and globally integrated cloud feedbacks computed in this manner agree remarkably well with the adjusted change in cloud radiative forcing. The global and annual mean model-simulated cloud feedback is dominated by contributions from medium thickness (3.6 < τ ≤ 23) cloud changes, but thick (τ > 23) cloud changes cause the rapid transition of cloud feedback values from positive in midlatitudes to negative poleward of 50°S and 70°N. High (CTP ≤ 440 hPa) cloud changes are the dominant contributor to longwave (LW) cloud feedback, but because their LW and shortwave (SW) impacts are in opposition, they contribute less to the net cloud feedback than do the positive contributions from low (CTP > 680 hPa) cloud changes. Midlevel (440 < CTP ≤ 680 hPa) cloud changes cause positive SW cloud feedbacks that are 80% as large as those due to low clouds. Finally, high cloud changes induce wider ranges of LW and SW cloud feedbacks across models than do low clouds.
    • Download: (11.77Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4221707
    Collections
    • Journal of Climate

    Show full item record

    contributor authorZelinka, Mark D.
    contributor authorKlein, Stephen A.
    contributor authorHartmann, Dennis L.
    date accessioned2017-06-09T17:04:26Z
    date available2017-06-09T17:04:26Z
    date copyright2012/06/01
    date issued2012
    identifier issn0894-8755
    identifier otherams-78979.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221707
    description abstracthis study proposes a novel technique for computing cloud feedbacks using histograms of cloud fraction as a joint function of cloud-top pressure (CTP) and optical depth (τ). These histograms were generated by the International Satellite Cloud Climatology Project (ISCCP) simulator that was incorporated into doubled-CO2 simulations from 11 global climate models in the Cloud Feedback Model Intercomparison Project. The authors use a radiative transfer model to compute top of atmosphere flux sensitivities to cloud fraction perturbations in each bin of the histogram for each month and latitude. Multiplying these cloud radiative kernels with histograms of modeled cloud fraction changes at each grid point per unit of global warming produces an estimate of cloud feedback. Spatial structures and globally integrated cloud feedbacks computed in this manner agree remarkably well with the adjusted change in cloud radiative forcing. The global and annual mean model-simulated cloud feedback is dominated by contributions from medium thickness (3.6 < τ ≤ 23) cloud changes, but thick (τ > 23) cloud changes cause the rapid transition of cloud feedback values from positive in midlatitudes to negative poleward of 50°S and 70°N. High (CTP ≤ 440 hPa) cloud changes are the dominant contributor to longwave (LW) cloud feedback, but because their LW and shortwave (SW) impacts are in opposition, they contribute less to the net cloud feedback than do the positive contributions from low (CTP > 680 hPa) cloud changes. Midlevel (440 < CTP ≤ 680 hPa) cloud changes cause positive SW cloud feedbacks that are 80% as large as those due to low clouds. Finally, high cloud changes induce wider ranges of LW and SW cloud feedbacks across models than do low clouds.
    publisherAmerican Meteorological Society
    titleComputing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels
    typeJournal Paper
    journal volume25
    journal issue11
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-11-00248.1
    journal fristpage3715
    journal lastpage3735
    treeJournal of Climate:;2012:;volume( 025 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian