YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Patterns of CO2 Variability from Global Satellite Data

    Source: Journal of Climate:;2012:;volume( 025 ):;issue: 018::page 6383
    Author:
    Ruzmaikin, Alexander
    ,
    Aumann, Hartmut H.
    ,
    Pagano, Thomas S.
    DOI: 10.1175/JCLI-D-11-00223.1
    Publisher: American Meteorological Society
    Abstract: he authors present an analysis of the global midtropospheric CO2 retrieved for all-sky (clear and cloudy) conditions from measurements by the Atmospheric Infrared Radiation Sounder on board the Aqua satellite in 2003?09. The global data coverage allows the identification of the set of CO2 spatial patterns and their time variability by applying principal component analysis and empirical mode decomposition. The first, dominant pattern represents 93% of the variability and exhibits the linear trend of 2 ± 0.2 ppm yr?1, as well as annual and interannual dependencies. The single-site record of CO2 at Mauna Loa compares well with variability of this pattern. The first principal component is phase shifted relative to the Southern Oscillation, indicating a causative relationship between the atmospheric CO2 and ENSO. The higher-order patterns show regional details of CO2 distribution and display the semiannual oscillation. The CO2 distributions are compared with the distribution of two major characteristics of air transport: the vertical velocity and potential temperature surfaces at the same height. In agreement with modeling, CO2 concentration closely traces the potential temperature surfaces (isentropes) in middle and high latitudes. However, its vertical transport in the tropics, where these surfaces are mostly horizontal, is suppressed. The results are in agreement with the previous results on annual and interannual CO2 time variability obtained by using the network flask data. This knowledge of the global CO2 spatial patterns can be useful in climate analyses and potentially in the challenging task of connecting CO2 sources and sinks with its distribution in the atmosphere.
    • Download: (3.697Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Patterns of CO2 Variability from Global Satellite Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4221690
    Collections
    • Journal of Climate

    Show full item record

    contributor authorRuzmaikin, Alexander
    contributor authorAumann, Hartmut H.
    contributor authorPagano, Thomas S.
    date accessioned2017-06-09T17:04:23Z
    date available2017-06-09T17:04:23Z
    date copyright2012/09/01
    date issued2012
    identifier issn0894-8755
    identifier otherams-78963.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221690
    description abstracthe authors present an analysis of the global midtropospheric CO2 retrieved for all-sky (clear and cloudy) conditions from measurements by the Atmospheric Infrared Radiation Sounder on board the Aqua satellite in 2003?09. The global data coverage allows the identification of the set of CO2 spatial patterns and their time variability by applying principal component analysis and empirical mode decomposition. The first, dominant pattern represents 93% of the variability and exhibits the linear trend of 2 ± 0.2 ppm yr?1, as well as annual and interannual dependencies. The single-site record of CO2 at Mauna Loa compares well with variability of this pattern. The first principal component is phase shifted relative to the Southern Oscillation, indicating a causative relationship between the atmospheric CO2 and ENSO. The higher-order patterns show regional details of CO2 distribution and display the semiannual oscillation. The CO2 distributions are compared with the distribution of two major characteristics of air transport: the vertical velocity and potential temperature surfaces at the same height. In agreement with modeling, CO2 concentration closely traces the potential temperature surfaces (isentropes) in middle and high latitudes. However, its vertical transport in the tropics, where these surfaces are mostly horizontal, is suppressed. The results are in agreement with the previous results on annual and interannual CO2 time variability obtained by using the network flask data. This knowledge of the global CO2 spatial patterns can be useful in climate analyses and potentially in the challenging task of connecting CO2 sources and sinks with its distribution in the atmosphere.
    publisherAmerican Meteorological Society
    titlePatterns of CO2 Variability from Global Satellite Data
    typeJournal Paper
    journal volume25
    journal issue18
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-11-00223.1
    journal fristpage6383
    journal lastpage6393
    treeJournal of Climate:;2012:;volume( 025 ):;issue: 018
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian