YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Response of Tropical Cyclone Statistics to an Increase in CO2 with Fixed Sea Surface Temperatures

    Source: Journal of Climate:;2011:;volume( 024 ):;issue: 020::page 5353
    Author:
    Held, Isaac M.
    ,
    Zhao, Ming
    DOI: 10.1175/JCLI-D-11-00050.1
    Publisher: American Meteorological Society
    Abstract: he effects on tropical cyclone statistics of doubling CO2, with fixed sea surface temperatures (SSTs), are compared to the effects of a 2-K increase in SST, with fixed CO2, using a 50-km resolution global atmospheric model. Confirming earlier results of Yoshimura and Sugi, a significant fraction of the reduction in globally averaged tropical storm frequency seen in simulations in which both SST and CO2 are increased can be thought of as the effect of the CO2 increase with fixed SSTs. Globally, the model produces a decrease in tropical cyclone frequency of about 10% due to doubling of CO2 and an additional 10% for a 2-K increase in SST, resulting in roughly a 20% reduction when both effects are present. The relative contribution of the CO2 effect to the total reduction is larger in the Northern than in the Southern Hemisphere. The average intensity of storms increases in the model with increasing SST, but intensity remains roughly unchanged, or decreases slightly, with the increase in CO2 alone. As a result, when considering the frequency of more intense cyclones, the intensity increase tends to compensate for the reduced total cyclone numbers for the SST increase in isolation, but not for the CO2 increase in isolation. Changes in genesis in these experiments roughly follow changes in mean vertical motion, reflecting changes in convective mass fluxes. Discussion of one possible perspective on how changes in the convective mass flux might alter genesis rates is provided.
    • Download: (1.633Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Response of Tropical Cyclone Statistics to an Increase in CO2 with Fixed Sea Surface Temperatures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4221561
    Collections
    • Journal of Climate

    Show full item record

    contributor authorHeld, Isaac M.
    contributor authorZhao, Ming
    date accessioned2017-06-09T17:03:55Z
    date available2017-06-09T17:03:55Z
    date copyright2011/10/01
    date issued2011
    identifier issn0894-8755
    identifier otherams-78847.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221561
    description abstracthe effects on tropical cyclone statistics of doubling CO2, with fixed sea surface temperatures (SSTs), are compared to the effects of a 2-K increase in SST, with fixed CO2, using a 50-km resolution global atmospheric model. Confirming earlier results of Yoshimura and Sugi, a significant fraction of the reduction in globally averaged tropical storm frequency seen in simulations in which both SST and CO2 are increased can be thought of as the effect of the CO2 increase with fixed SSTs. Globally, the model produces a decrease in tropical cyclone frequency of about 10% due to doubling of CO2 and an additional 10% for a 2-K increase in SST, resulting in roughly a 20% reduction when both effects are present. The relative contribution of the CO2 effect to the total reduction is larger in the Northern than in the Southern Hemisphere. The average intensity of storms increases in the model with increasing SST, but intensity remains roughly unchanged, or decreases slightly, with the increase in CO2 alone. As a result, when considering the frequency of more intense cyclones, the intensity increase tends to compensate for the reduced total cyclone numbers for the SST increase in isolation, but not for the CO2 increase in isolation. Changes in genesis in these experiments roughly follow changes in mean vertical motion, reflecting changes in convective mass fluxes. Discussion of one possible perspective on how changes in the convective mass flux might alter genesis rates is provided.
    publisherAmerican Meteorological Society
    titleThe Response of Tropical Cyclone Statistics to an Increase in CO2 with Fixed Sea Surface Temperatures
    typeJournal Paper
    journal volume24
    journal issue20
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-11-00050.1
    journal fristpage5353
    journal lastpage5364
    treeJournal of Climate:;2011:;volume( 024 ):;issue: 020
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian