YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Plane-Parallel Albedo Bias of Liquid Clouds from MODIS Observations

    Source: Journal of Climate:;2007:;volume( 020 ):;issue: 020::page 5114
    Author:
    Oreopoulos, Lazaros
    ,
    Cahalan, Robert F.
    ,
    Platnick, Steven
    DOI: 10.1175/JCLI4305.1
    Publisher: American Meteorological Society
    Abstract: The authors present the global plane-parallel shortwave albedo bias of liquid clouds for two months, July 2003 and January 2004. The cloud optical properties necessary to perform the bias calculations come from the operational Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and MODIS Aqua level-3 datasets. These data, along with ancillary surface albedo and atmospheric information consistent with the MODIS retrievals, are inserted into a broadband shortwave radiative transfer model to calculate the fluxes at the atmospheric column boundaries. The plane-parallel homogeneous (PPH) calculations are based on the mean cloud properties, while independent column approximation (ICA) calculations are based either on 1D histograms of optical thickness or joint 2D histograms of optical thickness and effective radius. The (positive) PPH albedo bias is simply the difference between PPH and ICA albedo calculations. Two types of biases are therefore examined: 1) the bias due to the horizontal inhomogeneity of optical thickness alone (the effective radius is set to the grid mean value) and 2) the bias due to simultaneous variations of optical thickness and effective radius as derived from their joint histograms. The authors find that the global bias of albedo (liquid cloud portion of the grid boxes only) is ?+0.03, which corresponds to roughly 8% of the global liquid cloud albedo and is only modestly sensitive to the inclusion of horizontal effective radius variability and time of day, but depends strongly on season and latitude. This albedo bias translates to ?3?3.5 W m?2 of bias (stronger negative values) in the diurnally averaged global shortwave cloud radiative forcing, assuming homogeneous conditions for the fraction of the grid box not covered by liquid clouds; zonal values can be as high as 8 W m?2. Finally, the (positive) broadband atmospheric absorptance bias is about an order of magnitude smaller than the albedo bias. The substantial magnitude of the PPH bias underlines the importance of predicting subgrid variability in GCMs and accounting for its effects on cloud?radiation interactions.
    • Download: (1.240Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Plane-Parallel Albedo Bias of Liquid Clouds from MODIS Observations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4221463
    Collections
    • Journal of Climate

    Show full item record

    contributor authorOreopoulos, Lazaros
    contributor authorCahalan, Robert F.
    contributor authorPlatnick, Steven
    date accessioned2017-06-09T17:03:39Z
    date available2017-06-09T17:03:39Z
    date copyright2007/10/01
    date issued2007
    identifier issn0894-8755
    identifier otherams-78759.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221463
    description abstractThe authors present the global plane-parallel shortwave albedo bias of liquid clouds for two months, July 2003 and January 2004. The cloud optical properties necessary to perform the bias calculations come from the operational Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and MODIS Aqua level-3 datasets. These data, along with ancillary surface albedo and atmospheric information consistent with the MODIS retrievals, are inserted into a broadband shortwave radiative transfer model to calculate the fluxes at the atmospheric column boundaries. The plane-parallel homogeneous (PPH) calculations are based on the mean cloud properties, while independent column approximation (ICA) calculations are based either on 1D histograms of optical thickness or joint 2D histograms of optical thickness and effective radius. The (positive) PPH albedo bias is simply the difference between PPH and ICA albedo calculations. Two types of biases are therefore examined: 1) the bias due to the horizontal inhomogeneity of optical thickness alone (the effective radius is set to the grid mean value) and 2) the bias due to simultaneous variations of optical thickness and effective radius as derived from their joint histograms. The authors find that the global bias of albedo (liquid cloud portion of the grid boxes only) is ?+0.03, which corresponds to roughly 8% of the global liquid cloud albedo and is only modestly sensitive to the inclusion of horizontal effective radius variability and time of day, but depends strongly on season and latitude. This albedo bias translates to ?3?3.5 W m?2 of bias (stronger negative values) in the diurnally averaged global shortwave cloud radiative forcing, assuming homogeneous conditions for the fraction of the grid box not covered by liquid clouds; zonal values can be as high as 8 W m?2. Finally, the (positive) broadband atmospheric absorptance bias is about an order of magnitude smaller than the albedo bias. The substantial magnitude of the PPH bias underlines the importance of predicting subgrid variability in GCMs and accounting for its effects on cloud?radiation interactions.
    publisherAmerican Meteorological Society
    titleThe Plane-Parallel Albedo Bias of Liquid Clouds from MODIS Observations
    typeJournal Paper
    journal volume20
    journal issue20
    journal titleJournal of Climate
    identifier doi10.1175/JCLI4305.1
    journal fristpage5114
    journal lastpage5125
    treeJournal of Climate:;2007:;volume( 020 ):;issue: 020
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian