YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Southeast Asian Pressure Surges and Significant Events of Atmospheric Mass Loss from the Northern Hemisphere, and a Case Study Analysis

    Source: Journal of Climate:;2007:;volume( 020 ):;issue: 018::page 4678
    Author:
    Carrera, Marco L.
    ,
    Gyakum, John R.
    DOI: 10.1175/JCLI4266.1
    Publisher: American Meteorological Society
    Abstract: A recent study of significant events of atmospheric mass depletion from the Northern Hemisphere (NH) during the extended boreal winter indicated that Southeast Asian pressure surges were an important physical mechanism that acted to channel the atmospheric mass equatorward out of the NH on a rapid time scale. This study builds upon this finding and examines both the direct and indirect roles of Southeast Asian pressure surges for a particular event of dry atmospheric mass depletion from the NH. The focus of this study is on the enhanced interhemispheric interactions and associated Southern Hemisphere (SH) tropical and extratropical responses resulting from the pressure surges. First, this study examines the conservation of dry atmospheric mass (i.e., the relationship between the dry meridional winds and the area-integrated dry air surface pressure) in the NCEP reanalysis for the 25 significant events of dry atmospheric mass depletion from the NH. Results indicate that the NCEP dry meridional winds are able to qualitatively capture the dry atmospheric mass evacuation from the NH. In a quantitative sense there is very good agreement between the wind and pressure data in the extratropics of both hemispheres. A distinct negative or southward bias in the NCEP vertically and zonally integrated dry meridional winds is apparent between 5° and 17.5°N. This southward bias was not present in the ECMWF Re-Analysis. The source of the southward bias in NCEP appears to result from a weaker analyzed ITCZ. The particular case of dry atmospheric mass depletion from the NH examined in detail is associated with an intense pressure surge over Southeast Asia. A significant enhancement of convection in the monsoon trough region of northern Australia occurs roughly 4 days after the peak intensity of the Siberian high. A low-level westerly wind burst develops in response to this enhanced zonal pressure gradient caused by the pressure surge as part of the onset of an active phase of the Australian summer monsoon. This study shows that three prominent anticyclonic circulations intensify in the SH extratropics, stretching from the south Indian Ocean to the South Pacific, beneath regions of upper-tropospheric dry atmospheric mass convergence, originating partly from the monsoon convection outflow. These anticyclonic circulations are regional manifestations of the dry atmospheric mass increase in the SH.
    • Download: (8.017Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Southeast Asian Pressure Surges and Significant Events of Atmospheric Mass Loss from the Northern Hemisphere, and a Case Study Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4221428
    Collections
    • Journal of Climate

    Show full item record

    contributor authorCarrera, Marco L.
    contributor authorGyakum, John R.
    date accessioned2017-06-09T17:03:34Z
    date available2017-06-09T17:03:34Z
    date copyright2007/09/01
    date issued2007
    identifier issn0894-8755
    identifier otherams-78727.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221428
    description abstractA recent study of significant events of atmospheric mass depletion from the Northern Hemisphere (NH) during the extended boreal winter indicated that Southeast Asian pressure surges were an important physical mechanism that acted to channel the atmospheric mass equatorward out of the NH on a rapid time scale. This study builds upon this finding and examines both the direct and indirect roles of Southeast Asian pressure surges for a particular event of dry atmospheric mass depletion from the NH. The focus of this study is on the enhanced interhemispheric interactions and associated Southern Hemisphere (SH) tropical and extratropical responses resulting from the pressure surges. First, this study examines the conservation of dry atmospheric mass (i.e., the relationship between the dry meridional winds and the area-integrated dry air surface pressure) in the NCEP reanalysis for the 25 significant events of dry atmospheric mass depletion from the NH. Results indicate that the NCEP dry meridional winds are able to qualitatively capture the dry atmospheric mass evacuation from the NH. In a quantitative sense there is very good agreement between the wind and pressure data in the extratropics of both hemispheres. A distinct negative or southward bias in the NCEP vertically and zonally integrated dry meridional winds is apparent between 5° and 17.5°N. This southward bias was not present in the ECMWF Re-Analysis. The source of the southward bias in NCEP appears to result from a weaker analyzed ITCZ. The particular case of dry atmospheric mass depletion from the NH examined in detail is associated with an intense pressure surge over Southeast Asia. A significant enhancement of convection in the monsoon trough region of northern Australia occurs roughly 4 days after the peak intensity of the Siberian high. A low-level westerly wind burst develops in response to this enhanced zonal pressure gradient caused by the pressure surge as part of the onset of an active phase of the Australian summer monsoon. This study shows that three prominent anticyclonic circulations intensify in the SH extratropics, stretching from the south Indian Ocean to the South Pacific, beneath regions of upper-tropospheric dry atmospheric mass convergence, originating partly from the monsoon convection outflow. These anticyclonic circulations are regional manifestations of the dry atmospheric mass increase in the SH.
    publisherAmerican Meteorological Society
    titleSoutheast Asian Pressure Surges and Significant Events of Atmospheric Mass Loss from the Northern Hemisphere, and a Case Study Analysis
    typeJournal Paper
    journal volume20
    journal issue18
    journal titleJournal of Climate
    identifier doi10.1175/JCLI4266.1
    journal fristpage4678
    journal lastpage4701
    treeJournal of Climate:;2007:;volume( 020 ):;issue: 018
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian