Assessment of Dynamic Downscaling of the Continental U.S. Regional Climate Using the Eta/SSiB Regional Climate ModelSource: Journal of Climate:;2007:;volume( 020 ):;issue: 016::page 4172DOI: 10.1175/JCLI4239.1Publisher: American Meteorological Society
Abstract: This study investigates the capability of the dynamic downscaling method (DDM) in a North American regional climate study using the Eta/Simplified Simple Biosphere (SSiB) Regional Climate Model (RCM). The main objective is to understand whether the Eta/SSiB RCM is capable of simulating North American regional climate features, mainly precipitation, at different scales under imposed boundary conditions. The summer of 1998 was selected for this study and the summers of 1993 and 1995 were used to confirm the 1998 results. The observed precipitation, NCEP?NCAR Global Reanalysis (NNGR), and North American Regional Reanalysis (NARR) were used for evaluation of the model?s simulations and/or as lateral boundary conditions (LBCs). A spectral analysis was applied to quantitatively examine the RCM?s downscaling ability at different scales. The simulations indicated that choice of domain size, LBCs, and grid spacing were crucial for the DDM. Several tests with different domain sizes indicated that the model in the North American climate simulation was particularly sensitive to its southern boundary position because of the importance of moisture transport by the southerly low-level jet (LLJ) in summer precipitation. Among these tests, only the RCM with 32-km resolution and NNGR LBC or with 80-km resolution and NARR LBC, in conjunction with appropriate domain sizes, was able to properly simulate precipitation and other atmospheric variables?especially humidity over the southeastern United States?during all three summer months?and produce a better spectral power distribution than that associated with the imposed LBC (for the 32-km case) and retain spectral power for large wavelengths (for the 80-km case). The analysis suggests that there might be strong atmospheric components of high-frequency variability over the Gulf of Mexico and the southeastern United States.
|
Collections
Show full item record
contributor author | Xue, Yongkang | |
contributor author | Vasic, Ratko | |
contributor author | Janjic, Zavisa | |
contributor author | Mesinger, Fedor | |
contributor author | Mitchell, Kenneth E. | |
date accessioned | 2017-06-09T17:03:29Z | |
date available | 2017-06-09T17:03:29Z | |
date copyright | 2007/08/01 | |
date issued | 2007 | |
identifier issn | 0894-8755 | |
identifier other | ams-78700.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4221397 | |
description abstract | This study investigates the capability of the dynamic downscaling method (DDM) in a North American regional climate study using the Eta/Simplified Simple Biosphere (SSiB) Regional Climate Model (RCM). The main objective is to understand whether the Eta/SSiB RCM is capable of simulating North American regional climate features, mainly precipitation, at different scales under imposed boundary conditions. The summer of 1998 was selected for this study and the summers of 1993 and 1995 were used to confirm the 1998 results. The observed precipitation, NCEP?NCAR Global Reanalysis (NNGR), and North American Regional Reanalysis (NARR) were used for evaluation of the model?s simulations and/or as lateral boundary conditions (LBCs). A spectral analysis was applied to quantitatively examine the RCM?s downscaling ability at different scales. The simulations indicated that choice of domain size, LBCs, and grid spacing were crucial for the DDM. Several tests with different domain sizes indicated that the model in the North American climate simulation was particularly sensitive to its southern boundary position because of the importance of moisture transport by the southerly low-level jet (LLJ) in summer precipitation. Among these tests, only the RCM with 32-km resolution and NNGR LBC or with 80-km resolution and NARR LBC, in conjunction with appropriate domain sizes, was able to properly simulate precipitation and other atmospheric variables?especially humidity over the southeastern United States?during all three summer months?and produce a better spectral power distribution than that associated with the imposed LBC (for the 32-km case) and retain spectral power for large wavelengths (for the 80-km case). The analysis suggests that there might be strong atmospheric components of high-frequency variability over the Gulf of Mexico and the southeastern United States. | |
publisher | American Meteorological Society | |
title | Assessment of Dynamic Downscaling of the Continental U.S. Regional Climate Using the Eta/SSiB Regional Climate Model | |
type | Journal Paper | |
journal volume | 20 | |
journal issue | 16 | |
journal title | Journal of Climate | |
identifier doi | 10.1175/JCLI4239.1 | |
journal fristpage | 4172 | |
journal lastpage | 4193 | |
tree | Journal of Climate:;2007:;volume( 020 ):;issue: 016 | |
contenttype | Fulltext |