YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Indian Ocean Variability in the GFDL Coupled Climate Model

    Source: Journal of Climate:;2007:;volume( 020 ):;issue: 013::page 2895
    Author:
    Song, Qian
    ,
    Vecchi, Gabriel A.
    ,
    Rosati, Anthony J.
    DOI: 10.1175/JCLI4159.1
    Publisher: American Meteorological Society
    Abstract: The interannual variability of the Indian Ocean, with particular focus on the Indian Ocean dipole/zonal mode (IODZM), is investigated in a 250-yr simulation of the GFDL coupled global general circulation model (CGCM). The CGCM successfully reproduces many fundamental characteristics of the climate system of the Indian Ocean. The character of the IODZM is explored, as are relationships between positive IODZM and El Niño events, through a composite analysis. The IODZM events in the CGCM grow through feedbacks between heat-content anomalies and SST-related atmospheric anomalies, particularly in the eastern tropical Indian Ocean. The composite IODZM events that co-occur with El Niño have stronger anomalies and a sharper east?west SSTA contrast than those that occur without El Niño. IODZM events, whether or not they occur with El Niño, are preceded by distinctive Indo-Pacific warm pool anomaly patterns in boreal spring: in the central Indian Ocean easterly surface winds, and in the western equatorial Pacific an eastward shift of deep convection, westerly surface winds, and warm sea surface temperature. However, delayed onsets of the anomaly patterns (e.g., boreal summer) are often not followed by IODZM events. The same anomaly patterns often precede El Niño, suggesting that the warm pool conditions favorable for both IODZM and El Niño are similar. Given that IODZM events can occur without El Niño, it is proposed that the observed IODZM?El Niño relation arises because the IODZM and El Niño are both large-scale phenomena in which variations of the Indo-Pacific warm pool deep convection plays a central role. Yet each phenomenon has its own dynamics and life cycle, allowing each to develop without the other. The CGCM integration also shows substantial decadal modulation of the occurrence of IODZM events, which is found to be not in phase with that of El Niño events. There is a weak, though significant, negative correlation between the two. Moreover, the statistical relationship between the IODZM and El Niño displays strong decadal variability.
    • Download: (4.175Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Indian Ocean Variability in the GFDL Coupled Climate Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4221312
    Collections
    • Journal of Climate

    Show full item record

    contributor authorSong, Qian
    contributor authorVecchi, Gabriel A.
    contributor authorRosati, Anthony J.
    date accessioned2017-06-09T17:03:13Z
    date available2017-06-09T17:03:13Z
    date copyright2007/07/01
    date issued2007
    identifier issn0894-8755
    identifier otherams-78622.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221312
    description abstractThe interannual variability of the Indian Ocean, with particular focus on the Indian Ocean dipole/zonal mode (IODZM), is investigated in a 250-yr simulation of the GFDL coupled global general circulation model (CGCM). The CGCM successfully reproduces many fundamental characteristics of the climate system of the Indian Ocean. The character of the IODZM is explored, as are relationships between positive IODZM and El Niño events, through a composite analysis. The IODZM events in the CGCM grow through feedbacks between heat-content anomalies and SST-related atmospheric anomalies, particularly in the eastern tropical Indian Ocean. The composite IODZM events that co-occur with El Niño have stronger anomalies and a sharper east?west SSTA contrast than those that occur without El Niño. IODZM events, whether or not they occur with El Niño, are preceded by distinctive Indo-Pacific warm pool anomaly patterns in boreal spring: in the central Indian Ocean easterly surface winds, and in the western equatorial Pacific an eastward shift of deep convection, westerly surface winds, and warm sea surface temperature. However, delayed onsets of the anomaly patterns (e.g., boreal summer) are often not followed by IODZM events. The same anomaly patterns often precede El Niño, suggesting that the warm pool conditions favorable for both IODZM and El Niño are similar. Given that IODZM events can occur without El Niño, it is proposed that the observed IODZM?El Niño relation arises because the IODZM and El Niño are both large-scale phenomena in which variations of the Indo-Pacific warm pool deep convection plays a central role. Yet each phenomenon has its own dynamics and life cycle, allowing each to develop without the other. The CGCM integration also shows substantial decadal modulation of the occurrence of IODZM events, which is found to be not in phase with that of El Niño events. There is a weak, though significant, negative correlation between the two. Moreover, the statistical relationship between the IODZM and El Niño displays strong decadal variability.
    publisherAmerican Meteorological Society
    titleIndian Ocean Variability in the GFDL Coupled Climate Model
    typeJournal Paper
    journal volume20
    journal issue13
    journal titleJournal of Climate
    identifier doi10.1175/JCLI4159.1
    journal fristpage2895
    journal lastpage2916
    treeJournal of Climate:;2007:;volume( 020 ):;issue: 013
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian