YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Rectification of ENSO Variability by Interdecadal Changes in the Equatorial Background Mean State in a CGCM Simulation

    Source: Journal of Climate:;2007:;volume( 020 ):;issue: 010::page 2002
    Author:
    Dewitte, Boris
    ,
    Yeh, Sang-Wook
    ,
    Moon, Byung-Kwon
    ,
    Cibot, Carole
    ,
    Terray, Laurent
    DOI: 10.1175/JCLI4110.1
    Publisher: American Meteorological Society
    Abstract: The link between the changes in equatorial background stratification and El Niño?Southern Oscillation (ENSO) modulation is investigated using a simulation from a 260-yr-long coupled general circulation model (CGCM). The work focuses on the role of nonlinearities associated with equatorial wave dynamics. As a first step, the low-frequency change in mean stratification is diagnosed and documented from the shallow-water parameters derived from a vertical mode decomposition of the CGCM. The parameters vary differently according to the baroclinic mode order, which may explain why a flattening thermocline does not necessarily lead to reduced ENSO activity. Estimations of baroclinic mode contributions to zonal current anomalies indicate that the decadal variability projects differently for the baroclinic modes as compared to the interannual variability. In particular, the high-order modes associated with decadal variability have a more pronounced signature in the western Pacific, whereas that associated with interannual variability (i.e., ENSO) shows more energy in the eastern Pacific. In the light of the results of the CGCM vertical mode decomposition, an intermediate coupled model (ICM) is used to test whether the nonlinearities associated with the changes in the baroclinic mode energy distribution can lead to coherent ENSO modulation. The results indicate that rectification of the interannual variability (ENSO time scales) by the interdecadal variability associated with changes in the oceanic mean states takes place in the ICM. The rectified effect results mostly in an increased variability and skewness of the zonal advection, which tends to produce a zonal seesaw of the sea surface temperature anomaly. A tropical mechanism for producing ENSO modulation is then proposed that reconciles both the rectified effect resulting from nonlinearities associated with equatorial wave dynamics and the tropical decadal mode of thermocline depth arising from Ekman-pumping anomalies located in the central South Pacific.
    • Download: (2.874Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Rectification of ENSO Variability by Interdecadal Changes in the Equatorial Background Mean State in a CGCM Simulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4221257
    Collections
    • Journal of Climate

    Show full item record

    contributor authorDewitte, Boris
    contributor authorYeh, Sang-Wook
    contributor authorMoon, Byung-Kwon
    contributor authorCibot, Carole
    contributor authorTerray, Laurent
    date accessioned2017-06-09T17:03:04Z
    date available2017-06-09T17:03:04Z
    date copyright2007/05/01
    date issued2007
    identifier issn0894-8755
    identifier otherams-78573.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221257
    description abstractThe link between the changes in equatorial background stratification and El Niño?Southern Oscillation (ENSO) modulation is investigated using a simulation from a 260-yr-long coupled general circulation model (CGCM). The work focuses on the role of nonlinearities associated with equatorial wave dynamics. As a first step, the low-frequency change in mean stratification is diagnosed and documented from the shallow-water parameters derived from a vertical mode decomposition of the CGCM. The parameters vary differently according to the baroclinic mode order, which may explain why a flattening thermocline does not necessarily lead to reduced ENSO activity. Estimations of baroclinic mode contributions to zonal current anomalies indicate that the decadal variability projects differently for the baroclinic modes as compared to the interannual variability. In particular, the high-order modes associated with decadal variability have a more pronounced signature in the western Pacific, whereas that associated with interannual variability (i.e., ENSO) shows more energy in the eastern Pacific. In the light of the results of the CGCM vertical mode decomposition, an intermediate coupled model (ICM) is used to test whether the nonlinearities associated with the changes in the baroclinic mode energy distribution can lead to coherent ENSO modulation. The results indicate that rectification of the interannual variability (ENSO time scales) by the interdecadal variability associated with changes in the oceanic mean states takes place in the ICM. The rectified effect results mostly in an increased variability and skewness of the zonal advection, which tends to produce a zonal seesaw of the sea surface temperature anomaly. A tropical mechanism for producing ENSO modulation is then proposed that reconciles both the rectified effect resulting from nonlinearities associated with equatorial wave dynamics and the tropical decadal mode of thermocline depth arising from Ekman-pumping anomalies located in the central South Pacific.
    publisherAmerican Meteorological Society
    titleRectification of ENSO Variability by Interdecadal Changes in the Equatorial Background Mean State in a CGCM Simulation
    typeJournal Paper
    journal volume20
    journal issue10
    journal titleJournal of Climate
    identifier doi10.1175/JCLI4110.1
    journal fristpage2002
    journal lastpage2021
    treeJournal of Climate:;2007:;volume( 020 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian