YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Robust Bayesian Uncertainty Analysis of Climate System Properties Using Markov Chain Monte Carlo Methods

    Source: Journal of Climate:;2007:;volume( 020 ):;issue: 007::page 1239
    Author:
    Tomassini, Lorenzo
    ,
    Reichert, Peter
    ,
    Knutti, Reto
    ,
    Stocker, Thomas F.
    ,
    Borsuk, Mark E.
    DOI: 10.1175/JCLI4064.1
    Publisher: American Meteorological Society
    Abstract: A Bayesian uncertainty analysis of 12 parameters of the Bern2.5D climate model is presented. This includes an extensive sensitivity study with respect to the major statistical assumptions. Special attention is given to the parameter representing climate sensitivity. Using the framework of robust Bayesian analysis, the authors first define a nonparametric set of prior distributions for climate sensitivity S and then update the entire set according to Bayes? theorem. The upper and lower probability that S lies above 4.5°C is calculated over the resulting set of posterior distributions. Furthermore, posterior distributions under different assumptions on the likelihood function are computed. The main characteristics of the marginal posterior distributions of climate sensitivity are quite robust with regard to statistical models of climate variability and observational error. However, the influence of prior assumptions on the tails of distributions is substantial considering the important political implications. Moreover, the authors find that ocean heat change data have a considerable potential to constrain climate sensitivity.
    • Download: (1.486Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Robust Bayesian Uncertainty Analysis of Climate System Properties Using Markov Chain Monte Carlo Methods

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4221206
    Collections
    • Journal of Climate

    Show full item record

    contributor authorTomassini, Lorenzo
    contributor authorReichert, Peter
    contributor authorKnutti, Reto
    contributor authorStocker, Thomas F.
    contributor authorBorsuk, Mark E.
    date accessioned2017-06-09T17:02:56Z
    date available2017-06-09T17:02:56Z
    date copyright2007/04/01
    date issued2007
    identifier issn0894-8755
    identifier otherams-78527.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221206
    description abstractA Bayesian uncertainty analysis of 12 parameters of the Bern2.5D climate model is presented. This includes an extensive sensitivity study with respect to the major statistical assumptions. Special attention is given to the parameter representing climate sensitivity. Using the framework of robust Bayesian analysis, the authors first define a nonparametric set of prior distributions for climate sensitivity S and then update the entire set according to Bayes? theorem. The upper and lower probability that S lies above 4.5°C is calculated over the resulting set of posterior distributions. Furthermore, posterior distributions under different assumptions on the likelihood function are computed. The main characteristics of the marginal posterior distributions of climate sensitivity are quite robust with regard to statistical models of climate variability and observational error. However, the influence of prior assumptions on the tails of distributions is substantial considering the important political implications. Moreover, the authors find that ocean heat change data have a considerable potential to constrain climate sensitivity.
    publisherAmerican Meteorological Society
    titleRobust Bayesian Uncertainty Analysis of Climate System Properties Using Markov Chain Monte Carlo Methods
    typeJournal Paper
    journal volume20
    journal issue7
    journal titleJournal of Climate
    identifier doi10.1175/JCLI4064.1
    journal fristpage1239
    journal lastpage1254
    treeJournal of Climate:;2007:;volume( 020 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian