YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Observational Constraints on the Cloud Thermodynamic Phase in Midlatitude Storms

    Source: Journal of Climate:;2006:;volume( 019 ):;issue: 020::page 5273
    Author:
    Naud, Catherine M.
    ,
    Del Genio, Anthony D.
    ,
    Bauer, Mike
    DOI: 10.1175/JCLI3919.1
    Publisher: American Meteorological Society
    Abstract: The conditions under which supercooled liquid water gradually gives way to ice in the mixed-phase regions of clouds are still poorly understood and may be an important source of cloud feedback uncertainty in general circulation model projections of long-term climate change. Two winters of cloud phase discrimination, cloud-top temperature, sea surface temperature, and precipitation from several satellite datasets (the NASA Terra and Aqua Moderate Resolution Imaging Spectroradiometer, and the Tropical Rainfall Measuring Mission) for the North Atlantic and Pacific Ocean basins are analyzed to better understand these processes. Reanalysis surface pressures and vertical velocities are used in combination with a synoptic storm-tracking algorithm to define storm tracks, create composite storm dynamical and cloud patterns, and examine changes in storm characteristics over their life cycles. Characteristically different storm cloud patterns exist in the Atlantic and Pacific and on the west and east sides of each ocean basin. This appears to be related to the different spatial patterns of sea surface temperature in the two ocean basins. Glaciation occurs at very warm temperatures in the high, thick, heavily precipitating clouds typical of frontal ascent regions, except where vertical velocities are strongest, similar to previous field experiments. Outside frontal regions, however, where clouds are shallower, supercooled water exists at lower cloud-top temperatures. This analysis is the first large-scale assessment of cloud phase and its relation to dynamics on climatologically representative time scales. It provides a potentially powerful benchmark for the design and evaluation of mixed-phase process parameterizations in general circulation models and suggests that assumptions made in some existing models may negatively bias their cloud feedback estimates.
    • Download: (2.226Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Observational Constraints on the Cloud Thermodynamic Phase in Midlatitude Storms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4221047
    Collections
    • Journal of Climate

    Show full item record

    contributor authorNaud, Catherine M.
    contributor authorDel Genio, Anthony D.
    contributor authorBauer, Mike
    date accessioned2017-06-09T17:02:29Z
    date available2017-06-09T17:02:29Z
    date copyright2006/10/01
    date issued2006
    identifier issn0894-8755
    identifier otherams-78384.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221047
    description abstractThe conditions under which supercooled liquid water gradually gives way to ice in the mixed-phase regions of clouds are still poorly understood and may be an important source of cloud feedback uncertainty in general circulation model projections of long-term climate change. Two winters of cloud phase discrimination, cloud-top temperature, sea surface temperature, and precipitation from several satellite datasets (the NASA Terra and Aqua Moderate Resolution Imaging Spectroradiometer, and the Tropical Rainfall Measuring Mission) for the North Atlantic and Pacific Ocean basins are analyzed to better understand these processes. Reanalysis surface pressures and vertical velocities are used in combination with a synoptic storm-tracking algorithm to define storm tracks, create composite storm dynamical and cloud patterns, and examine changes in storm characteristics over their life cycles. Characteristically different storm cloud patterns exist in the Atlantic and Pacific and on the west and east sides of each ocean basin. This appears to be related to the different spatial patterns of sea surface temperature in the two ocean basins. Glaciation occurs at very warm temperatures in the high, thick, heavily precipitating clouds typical of frontal ascent regions, except where vertical velocities are strongest, similar to previous field experiments. Outside frontal regions, however, where clouds are shallower, supercooled water exists at lower cloud-top temperatures. This analysis is the first large-scale assessment of cloud phase and its relation to dynamics on climatologically representative time scales. It provides a potentially powerful benchmark for the design and evaluation of mixed-phase process parameterizations in general circulation models and suggests that assumptions made in some existing models may negatively bias their cloud feedback estimates.
    publisherAmerican Meteorological Society
    titleObservational Constraints on the Cloud Thermodynamic Phase in Midlatitude Storms
    typeJournal Paper
    journal volume19
    journal issue20
    journal titleJournal of Climate
    identifier doi10.1175/JCLI3919.1
    journal fristpage5273
    journal lastpage5288
    treeJournal of Climate:;2006:;volume( 019 ):;issue: 020
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian