YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity of the Atlantic Thermohaline Circulation and Its Stability to Basin-Scale Variations in Vertical Mixing

    Source: Journal of Climate:;2006:;volume( 019 ):;issue: 021::page 5467
    Author:
    Sijp, Willem P.
    ,
    England, Matthew H.
    DOI: 10.1175/JCLI3909.1
    Publisher: American Meteorological Society
    Abstract: This study shows that a reduction in vertical mixing applied inside the Atlantic basin can drastically increase North Atlantic Deep Water (NADW) stability with respect to freshwater perturbations applied to the North Atlantic. This is contrary to the notion that the stability of the ocean?s thermohaline circulation simply scales with vertical mixing rates. An Antarctic Intermediate Water (AAIW) reverse cell, reliant upon upwelling of cold AAIW into the Atlantic thermocline, is found to be associated with stable states where NADW is collapsed. Transitions between NADW ?on? and ?off? states are characterized by interhemispheric competition between this AAIW cell and the NADW cell. In contrast to the AAIW reverse cell, NADW eventually upwells outside the Atlantic basin and is thus not as sensitive to changes in vertical mixing within the Atlantic. A reduction in vertical mixing in the Atlantic weakens the AAIW reverse cell, resulting in an enhanced stability of NADW formation. The results also suggest that the AAIW reverse cell is responsible for the stability of NADW collapsed states, and thereby plays a key role in maintaining multiple equilibria in the climate system. A global increase of vertical mixing in the model results in significantly enhanced NADW stability, as found in previous studies. However, an enhancement of vertical mixing applied only inside the Atlantic Ocean results in a reduction of NADW stability. It is concluded that the stability of NADW formation to freshwater perturbations depends critically on the basin-scale distribution of vertical mixing in the world?s oceans.
    • Download: (1.413Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity of the Atlantic Thermohaline Circulation and Its Stability to Basin-Scale Variations in Vertical Mixing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4221037
    Collections
    • Journal of Climate

    Show full item record

    contributor authorSijp, Willem P.
    contributor authorEngland, Matthew H.
    date accessioned2017-06-09T17:02:27Z
    date available2017-06-09T17:02:27Z
    date copyright2006/11/01
    date issued2006
    identifier issn0894-8755
    identifier otherams-78375.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221037
    description abstractThis study shows that a reduction in vertical mixing applied inside the Atlantic basin can drastically increase North Atlantic Deep Water (NADW) stability with respect to freshwater perturbations applied to the North Atlantic. This is contrary to the notion that the stability of the ocean?s thermohaline circulation simply scales with vertical mixing rates. An Antarctic Intermediate Water (AAIW) reverse cell, reliant upon upwelling of cold AAIW into the Atlantic thermocline, is found to be associated with stable states where NADW is collapsed. Transitions between NADW ?on? and ?off? states are characterized by interhemispheric competition between this AAIW cell and the NADW cell. In contrast to the AAIW reverse cell, NADW eventually upwells outside the Atlantic basin and is thus not as sensitive to changes in vertical mixing within the Atlantic. A reduction in vertical mixing in the Atlantic weakens the AAIW reverse cell, resulting in an enhanced stability of NADW formation. The results also suggest that the AAIW reverse cell is responsible for the stability of NADW collapsed states, and thereby plays a key role in maintaining multiple equilibria in the climate system. A global increase of vertical mixing in the model results in significantly enhanced NADW stability, as found in previous studies. However, an enhancement of vertical mixing applied only inside the Atlantic Ocean results in a reduction of NADW stability. It is concluded that the stability of NADW formation to freshwater perturbations depends critically on the basin-scale distribution of vertical mixing in the world?s oceans.
    publisherAmerican Meteorological Society
    titleSensitivity of the Atlantic Thermohaline Circulation and Its Stability to Basin-Scale Variations in Vertical Mixing
    typeJournal Paper
    journal volume19
    journal issue21
    journal titleJournal of Climate
    identifier doi10.1175/JCLI3909.1
    journal fristpage5467
    journal lastpage5478
    treeJournal of Climate:;2006:;volume( 019 ):;issue: 021
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian