YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Two Approaches to Quantifying Uncertainty in Global Temperature Changes

    Source: Journal of Climate:;2006:;volume( 019 ):;issue: 019::page 4785
    Author:
    Lopez, Ana
    ,
    Tebaldi, Claudia
    ,
    New, Mark
    ,
    Stainforth, Dave
    ,
    Allen, Myles
    ,
    Kettleborough, Jamie
    DOI: 10.1175/JCLI3895.1
    Publisher: American Meteorological Society
    Abstract: A Bayesian statistical model developed to produce probabilistic projections of regional climate change using observations and ensembles of general circulation models (GCMs) is applied to evaluate the probability distribution of global mean temperature change under different forcing scenarios. The results are compared to probabilistic projections obtained using optimal fingerprinting techniques that constrain GCM projections by observations. It is found that, due to the different assumptions underlying these statistical approaches, the predicted distributions differ significantly in particular in their uncertainty ranges. Results presented herein demonstrate that probabilistic projections of future climate are strongly dependent on the assumptions of the underlying methodologies.
    • Download: (502.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Two Approaches to Quantifying Uncertainty in Global Temperature Changes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4221021
    Collections
    • Journal of Climate

    Show full item record

    contributor authorLopez, Ana
    contributor authorTebaldi, Claudia
    contributor authorNew, Mark
    contributor authorStainforth, Dave
    contributor authorAllen, Myles
    contributor authorKettleborough, Jamie
    date accessioned2017-06-09T17:02:25Z
    date available2017-06-09T17:02:25Z
    date copyright2006/10/01
    date issued2006
    identifier issn0894-8755
    identifier otherams-78361.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221021
    description abstractA Bayesian statistical model developed to produce probabilistic projections of regional climate change using observations and ensembles of general circulation models (GCMs) is applied to evaluate the probability distribution of global mean temperature change under different forcing scenarios. The results are compared to probabilistic projections obtained using optimal fingerprinting techniques that constrain GCM projections by observations. It is found that, due to the different assumptions underlying these statistical approaches, the predicted distributions differ significantly in particular in their uncertainty ranges. Results presented herein demonstrate that probabilistic projections of future climate are strongly dependent on the assumptions of the underlying methodologies.
    publisherAmerican Meteorological Society
    titleTwo Approaches to Quantifying Uncertainty in Global Temperature Changes
    typeJournal Paper
    journal volume19
    journal issue19
    journal titleJournal of Climate
    identifier doi10.1175/JCLI3895.1
    journal fristpage4785
    journal lastpage4796
    treeJournal of Climate:;2006:;volume( 019 ):;issue: 019
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian