YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Soil Moisture Feedbacks to Precipitation in Southern Africa

    Source: Journal of Climate:;2006:;volume( 019 ):;issue: 017::page 4198
    Author:
    Cook, Benjamin I.
    ,
    Bonan, Gordon B.
    ,
    Levis, Samuel
    DOI: 10.1175/JCLI3856.1
    Publisher: American Meteorological Society
    Abstract: The effects of increased soil moisture on wet season (October?March) precipitation in southern Africa are investigated using the Community Climate System Model version 3 (CCSM3). In the CTRL case, soil moisture is allowed to interact dynamically with the atmosphere. In the MOIST case, soil moisture is set so that evapotranspiration is not limited by the supply of water. The MOIST scenario actually results in decreased precipitation over the region of perturbed soil moisture, compared to CTRL. The increased soil moisture alters the surface energy balance, resulting in a shift from sensible to latent heating. This manifests in two ways relevant for precipitation processes. First, the shift from sensible to latent heating cools the surface, causing a higher surface pressure, a reduced boundary layer height, and an increased vertical gradient in equivalent potential temperature. These changes are indicative of an increase in atmospheric stability, inhibiting vertical movement of air parcels and decreasing the ability of precipitation to form. Second, the surface changes induce anomalous surface divergence and increased subsidence. This causes a reduction in cloud cover and specific humidity above 700 hPa and results in a net decrease of column-integrated precipitable water, despite the increased surface water flux, indicating a reduction in moisture convergence. Based on this and a previous study, soil moisture may act as a negative feedback to precipitation in southern Africa, helping to buffer the system against any external forcing of precipitation (e.g., ENSO).
    • Download: (1.685Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Soil Moisture Feedbacks to Precipitation in Southern Africa

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4220979
    Collections
    • Journal of Climate

    Show full item record

    contributor authorCook, Benjamin I.
    contributor authorBonan, Gordon B.
    contributor authorLevis, Samuel
    date accessioned2017-06-09T17:02:13Z
    date available2017-06-09T17:02:13Z
    date copyright2006/09/01
    date issued2006
    identifier issn0894-8755
    identifier otherams-78322.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4220979
    description abstractThe effects of increased soil moisture on wet season (October?March) precipitation in southern Africa are investigated using the Community Climate System Model version 3 (CCSM3). In the CTRL case, soil moisture is allowed to interact dynamically with the atmosphere. In the MOIST case, soil moisture is set so that evapotranspiration is not limited by the supply of water. The MOIST scenario actually results in decreased precipitation over the region of perturbed soil moisture, compared to CTRL. The increased soil moisture alters the surface energy balance, resulting in a shift from sensible to latent heating. This manifests in two ways relevant for precipitation processes. First, the shift from sensible to latent heating cools the surface, causing a higher surface pressure, a reduced boundary layer height, and an increased vertical gradient in equivalent potential temperature. These changes are indicative of an increase in atmospheric stability, inhibiting vertical movement of air parcels and decreasing the ability of precipitation to form. Second, the surface changes induce anomalous surface divergence and increased subsidence. This causes a reduction in cloud cover and specific humidity above 700 hPa and results in a net decrease of column-integrated precipitable water, despite the increased surface water flux, indicating a reduction in moisture convergence. Based on this and a previous study, soil moisture may act as a negative feedback to precipitation in southern Africa, helping to buffer the system against any external forcing of precipitation (e.g., ENSO).
    publisherAmerican Meteorological Society
    titleSoil Moisture Feedbacks to Precipitation in Southern Africa
    typeJournal Paper
    journal volume19
    journal issue17
    journal titleJournal of Climate
    identifier doi10.1175/JCLI3856.1
    journal fristpage4198
    journal lastpage4206
    treeJournal of Climate:;2006:;volume( 019 ):;issue: 017
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian