YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Radiative and Dynamical Feedbacks over the Equatorial Cold Tongue: Results from Nine Atmospheric GCMs

    Source: Journal of Climate:;2006:;volume( 019 ):;issue: 016::page 4059
    Author:
    Sun, D.-Z.
    ,
    Zhang, T.
    ,
    Covey, C.
    ,
    Klein, S. A.
    ,
    Collins, W. D.
    ,
    Hack, J. J.
    ,
    Kiehl, J. T.
    ,
    Meehl, G. A.
    ,
    Held, I. M.
    ,
    Suarez, M.
    DOI: 10.1175/JCLI3835.1
    Publisher: American Meteorological Society
    Abstract: The equatorial Pacific is a region with strong negative feedbacks. Yet coupled general circulation models (GCMs) have exhibited a propensity to develop a significant SST bias in that region, suggesting an unrealistic sensitivity in the coupled models to small energy flux errors that inevitably occur in the individual model components. Could this ?hypersensitivity? exhibited in a coupled model be due to an underestimate of the strength of the negative feedbacks in this region? With this suspicion, the feedbacks in the equatorial Pacific in nine atmospheric GCMs (AGCMs) have been quantified using the interannual variations in that region and compared with the corresponding calculations from the observations. The nine AGCMs are the NCAR Community Climate Model version 1 (CAM1), the NCAR Community Climate Model version 2 (CAM2), the NCAR Community Climate Model version 3 (CAM3), the NCAR CAM3 at T85 resolution, the NASA Seasonal-to-Interannual Prediction Project (NSIPP) Atmospheric Model, the Hadley Centre Atmospheric Model (HadAM3), the Institut Pierre Simon Laplace (IPSL) model (LMDZ4), the Geophysical Fluid Dynamics Laboratory (GFDL) AM2p10, and the GFDL AM2p12. All the corresponding coupled runs of these nine AGCMs have an excessive cold tongue in the equatorial Pacific. The net atmospheric feedback over the equatorial Pacific in the two GFDL models is found to be comparable to the observed value. All other models are found to have a weaker negative net feedback from the atmosphere?a weaker regulating effect on the underlying SST than the real atmosphere. Except for the French (IPSL) model, a weaker negative feedback from the cloud albedo and a weaker negative feedback from the atmospheric transport are the two leading contributors to the weaker regulating effect from the atmosphere. The underestimate of the strength of the negative feedbacks by the models is apparently linked to an underestimate of the equatorial precipitation response. All models have a stronger water vapor feedback than that indicated in Earth Radiation Budget Experiment (ERBE) observations. These results confirm the suspicion that an underestimate of the regulatory effect from the atmosphere over the equatorial Pacific region is a prevalent problem. The results also suggest, however, that a weaker regulatory effect from the atmosphere is unlikely solely responsible for the hypersensitivity in all models. The need to validate the feedbacks from the ocean transport is therefore highlighted.
    • Download: (4.100Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Radiative and Dynamical Feedbacks over the Equatorial Cold Tongue: Results from Nine Atmospheric GCMs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4220954
    Collections
    • Journal of Climate

    Show full item record

    contributor authorSun, D.-Z.
    contributor authorZhang, T.
    contributor authorCovey, C.
    contributor authorKlein, S. A.
    contributor authorCollins, W. D.
    contributor authorHack, J. J.
    contributor authorKiehl, J. T.
    contributor authorMeehl, G. A.
    contributor authorHeld, I. M.
    contributor authorSuarez, M.
    date accessioned2017-06-09T17:02:10Z
    date available2017-06-09T17:02:10Z
    date copyright2006/08/01
    date issued2006
    identifier issn0894-8755
    identifier otherams-78301.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4220954
    description abstractThe equatorial Pacific is a region with strong negative feedbacks. Yet coupled general circulation models (GCMs) have exhibited a propensity to develop a significant SST bias in that region, suggesting an unrealistic sensitivity in the coupled models to small energy flux errors that inevitably occur in the individual model components. Could this ?hypersensitivity? exhibited in a coupled model be due to an underestimate of the strength of the negative feedbacks in this region? With this suspicion, the feedbacks in the equatorial Pacific in nine atmospheric GCMs (AGCMs) have been quantified using the interannual variations in that region and compared with the corresponding calculations from the observations. The nine AGCMs are the NCAR Community Climate Model version 1 (CAM1), the NCAR Community Climate Model version 2 (CAM2), the NCAR Community Climate Model version 3 (CAM3), the NCAR CAM3 at T85 resolution, the NASA Seasonal-to-Interannual Prediction Project (NSIPP) Atmospheric Model, the Hadley Centre Atmospheric Model (HadAM3), the Institut Pierre Simon Laplace (IPSL) model (LMDZ4), the Geophysical Fluid Dynamics Laboratory (GFDL) AM2p10, and the GFDL AM2p12. All the corresponding coupled runs of these nine AGCMs have an excessive cold tongue in the equatorial Pacific. The net atmospheric feedback over the equatorial Pacific in the two GFDL models is found to be comparable to the observed value. All other models are found to have a weaker negative net feedback from the atmosphere?a weaker regulating effect on the underlying SST than the real atmosphere. Except for the French (IPSL) model, a weaker negative feedback from the cloud albedo and a weaker negative feedback from the atmospheric transport are the two leading contributors to the weaker regulating effect from the atmosphere. The underestimate of the strength of the negative feedbacks by the models is apparently linked to an underestimate of the equatorial precipitation response. All models have a stronger water vapor feedback than that indicated in Earth Radiation Budget Experiment (ERBE) observations. These results confirm the suspicion that an underestimate of the regulatory effect from the atmosphere over the equatorial Pacific region is a prevalent problem. The results also suggest, however, that a weaker regulatory effect from the atmosphere is unlikely solely responsible for the hypersensitivity in all models. The need to validate the feedbacks from the ocean transport is therefore highlighted.
    publisherAmerican Meteorological Society
    titleRadiative and Dynamical Feedbacks over the Equatorial Cold Tongue: Results from Nine Atmospheric GCMs
    typeJournal Paper
    journal volume19
    journal issue16
    journal titleJournal of Climate
    identifier doi10.1175/JCLI3835.1
    journal fristpage4059
    journal lastpage4074
    treeJournal of Climate:;2006:;volume( 019 ):;issue: 016
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian