YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of the Hydrological Cycle in the ECHAM5 Model

    Source: Journal of Climate:;2006:;volume( 019 ):;issue: 016::page 3810
    Author:
    Hagemann, Stefan
    ,
    Arpe, Klaus
    ,
    Roeckner, Erich
    DOI: 10.1175/JCLI3831.1
    Publisher: American Meteorological Society
    Abstract: This study investigates the impact of model resolution on the hydrological cycle in a suite of model simulations using a new version of the Max Planck Institute for Meteorology atmospheric general circulation model (AGCM). Special attention is paid to the evaluation of precipitation on the regional scale by comparing model simulations with observational data in a number of catchments representing the major river systems on the earth in different climate zones. It is found that an increased vertical resolution, from 19 to 31 atmospheric layers, has a beneficial effect on simulated precipitation with respect to both the annual mean and the annual cycle. On the other hand, the influence of increased horizontal resolution, from T63 to T106, is comparatively small. Most of the improvements at higher vertical resolution, on the scale of a catchment, are due to large-scale moisture transport, whereas the impact of local water recycling through evapotranspiration is somewhat smaller. At high horizontal and vertical resolution (T106L31) the model captures most features of the observed hydrological cycle over land, and also the local and remote precipitation response to El Niño?Southern Oscillation (ENSO) events. Major deficiencies are the overestimation of precipitation over the oceans, especially at higher vertical resolution, along steep mountain slopes and during the Asian summer monsoon season, whereas a dry bias exists over Australia. In addition, the model fails to reproduce the observed precipitation response to ENSO variability in the Indian Ocean and Africa. This might be related to missing coupled air?sea feedbacks in an AGCM forced with observed sea surface temperatures.
    • Download: (3.122Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of the Hydrological Cycle in the ECHAM5 Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4220950
    Collections
    • Journal of Climate

    Show full item record

    contributor authorHagemann, Stefan
    contributor authorArpe, Klaus
    contributor authorRoeckner, Erich
    date accessioned2017-06-09T17:02:09Z
    date available2017-06-09T17:02:09Z
    date copyright2006/08/01
    date issued2006
    identifier issn0894-8755
    identifier otherams-78297.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4220950
    description abstractThis study investigates the impact of model resolution on the hydrological cycle in a suite of model simulations using a new version of the Max Planck Institute for Meteorology atmospheric general circulation model (AGCM). Special attention is paid to the evaluation of precipitation on the regional scale by comparing model simulations with observational data in a number of catchments representing the major river systems on the earth in different climate zones. It is found that an increased vertical resolution, from 19 to 31 atmospheric layers, has a beneficial effect on simulated precipitation with respect to both the annual mean and the annual cycle. On the other hand, the influence of increased horizontal resolution, from T63 to T106, is comparatively small. Most of the improvements at higher vertical resolution, on the scale of a catchment, are due to large-scale moisture transport, whereas the impact of local water recycling through evapotranspiration is somewhat smaller. At high horizontal and vertical resolution (T106L31) the model captures most features of the observed hydrological cycle over land, and also the local and remote precipitation response to El Niño?Southern Oscillation (ENSO) events. Major deficiencies are the overestimation of precipitation over the oceans, especially at higher vertical resolution, along steep mountain slopes and during the Asian summer monsoon season, whereas a dry bias exists over Australia. In addition, the model fails to reproduce the observed precipitation response to ENSO variability in the Indian Ocean and Africa. This might be related to missing coupled air?sea feedbacks in an AGCM forced with observed sea surface temperatures.
    publisherAmerican Meteorological Society
    titleEvaluation of the Hydrological Cycle in the ECHAM5 Model
    typeJournal Paper
    journal volume19
    journal issue16
    journal titleJournal of Climate
    identifier doi10.1175/JCLI3831.1
    journal fristpage3810
    journal lastpage3827
    treeJournal of Climate:;2006:;volume( 019 ):;issue: 016
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian