YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Characteristics of Atmospheric Transport Using Three Numerical Formulations for Atmospheric Dynamics in a Single GCM Framework

    Source: Journal of Climate:;2006:;volume( 019 ):;issue: 011::page 2243
    Author:
    Rasch, Philip J.
    ,
    Coleman, Danielle B.
    ,
    Mahowald, Natalie
    ,
    Williamson, David L.
    ,
    Lin, Shian-Jiann
    ,
    Boville, Byron A.
    ,
    Hess, Peter
    DOI: 10.1175/JCLI3763.1
    Publisher: American Meteorological Society
    Abstract: This study examines the sensitivity of a number of important archetypical tracer problems to the numerical method used to solve the equations of tracer transport and atmospheric dynamics. The tracers' scenarios were constructed to exercise the model for a variety of problems relevant to understanding and modeling the physical, dynamical, and chemical aspects of the climate system. The use of spectral, semi-Lagrangian, and finite volume (FV) numerical methods for the equations is explored. All subgrid-scale physical parameterizations were the same in all model simulations. The model behavior with a few short simulations with passive tracers is explored, and with much longer simulations of radon, SF6, ozone, a tracer designed to mimic some aspects of a biospheric source/sink of CO2, and a suite of tracers designed around the conservation laws for thermodynamics and mass in the model. Large differences were seen near the tropopause in the model, where the FV core shows a much reduced level of vertical and meridional mixing. There was also evidence that the subtropical subsidence regions are more isolated from Tropics and midlatitudes in the FV core than seen in the other model simulations. There are also big differences in the stratosphere, particularly for age of air in the stratosphere and ozone. A comparison with estimated age of air from CO2 and SF6 measurements in the stratosphere suggest that the FV core is behaving most realistically. A neutral biosphere (NB) test case is used to explore issues of diurnal and seasonal rectification of a tracer with sources and sinks at the surface. The sources and sinks have a zero annual average, and the rectification is associated with temporal correlations between the sources and sinks, and transport. The test suggests that the rectification is strongly influenced by the resolved-scale dynamics (i.e., the dynamical core) and that the numerical formulation for dynamics and transport still plays a critical role in the distribution of NB-like species. Since the distribution of species driven by these processes have a strong influence on the interpretation of the ?missing sink? for CO2 and the interpretation of climate change associated with anthropogenic forcing herein, these issues should not be neglected. The spectral core showed the largest departures from the predicted nonlinear relationship required by the equations for thermodynamics and mass conservations. The FV and semi-Lagrangian dynamics (SLD) models both produced errors a factor of 2 lower. The SLD model shows a small but systematic bias in its ability to maintain this relationship that was not present in the FV simulation. The results of the study indicate that for virtually all of these problems, the model numerics still have a large role in influencing the model solutions. It was frequently the case that the differences in solutions resulting from varying the numerics still exceed the differences in the simulations resulting from significant physical perturbations (like changes in greenhouse gas forcing). This does not mean that the response of the system to physical changes is not correct. When results are consistent using different numerical formulations for dynamics and transport it lends confidence to one's conclusions, but it does indicate that some caution is required in interpreting the results. The results from this study favor use of the FV core for tracer transport and model dynamics. The FV core is, unlike the others, conservative, less diffusive (e.g., maintains strong gradients better), and maintains the nonlinear relationships among variables required by thermodynamic and mass conservation constraints more accurately.
    • Download: (3.288Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Characteristics of Atmospheric Transport Using Three Numerical Formulations for Atmospheric Dynamics in a Single GCM Framework

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4220877
    Collections
    • Journal of Climate

    Show full item record

    contributor authorRasch, Philip J.
    contributor authorColeman, Danielle B.
    contributor authorMahowald, Natalie
    contributor authorWilliamson, David L.
    contributor authorLin, Shian-Jiann
    contributor authorBoville, Byron A.
    contributor authorHess, Peter
    date accessioned2017-06-09T17:01:56Z
    date available2017-06-09T17:01:56Z
    date copyright2006/06/01
    date issued2006
    identifier issn0894-8755
    identifier otherams-78231.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4220877
    description abstractThis study examines the sensitivity of a number of important archetypical tracer problems to the numerical method used to solve the equations of tracer transport and atmospheric dynamics. The tracers' scenarios were constructed to exercise the model for a variety of problems relevant to understanding and modeling the physical, dynamical, and chemical aspects of the climate system. The use of spectral, semi-Lagrangian, and finite volume (FV) numerical methods for the equations is explored. All subgrid-scale physical parameterizations were the same in all model simulations. The model behavior with a few short simulations with passive tracers is explored, and with much longer simulations of radon, SF6, ozone, a tracer designed to mimic some aspects of a biospheric source/sink of CO2, and a suite of tracers designed around the conservation laws for thermodynamics and mass in the model. Large differences were seen near the tropopause in the model, where the FV core shows a much reduced level of vertical and meridional mixing. There was also evidence that the subtropical subsidence regions are more isolated from Tropics and midlatitudes in the FV core than seen in the other model simulations. There are also big differences in the stratosphere, particularly for age of air in the stratosphere and ozone. A comparison with estimated age of air from CO2 and SF6 measurements in the stratosphere suggest that the FV core is behaving most realistically. A neutral biosphere (NB) test case is used to explore issues of diurnal and seasonal rectification of a tracer with sources and sinks at the surface. The sources and sinks have a zero annual average, and the rectification is associated with temporal correlations between the sources and sinks, and transport. The test suggests that the rectification is strongly influenced by the resolved-scale dynamics (i.e., the dynamical core) and that the numerical formulation for dynamics and transport still plays a critical role in the distribution of NB-like species. Since the distribution of species driven by these processes have a strong influence on the interpretation of the ?missing sink? for CO2 and the interpretation of climate change associated with anthropogenic forcing herein, these issues should not be neglected. The spectral core showed the largest departures from the predicted nonlinear relationship required by the equations for thermodynamics and mass conservations. The FV and semi-Lagrangian dynamics (SLD) models both produced errors a factor of 2 lower. The SLD model shows a small but systematic bias in its ability to maintain this relationship that was not present in the FV simulation. The results of the study indicate that for virtually all of these problems, the model numerics still have a large role in influencing the model solutions. It was frequently the case that the differences in solutions resulting from varying the numerics still exceed the differences in the simulations resulting from significant physical perturbations (like changes in greenhouse gas forcing). This does not mean that the response of the system to physical changes is not correct. When results are consistent using different numerical formulations for dynamics and transport it lends confidence to one's conclusions, but it does indicate that some caution is required in interpreting the results. The results from this study favor use of the FV core for tracer transport and model dynamics. The FV core is, unlike the others, conservative, less diffusive (e.g., maintains strong gradients better), and maintains the nonlinear relationships among variables required by thermodynamic and mass conservation constraints more accurately.
    publisherAmerican Meteorological Society
    titleCharacteristics of Atmospheric Transport Using Three Numerical Formulations for Atmospheric Dynamics in a Single GCM Framework
    typeJournal Paper
    journal volume19
    journal issue11
    journal titleJournal of Climate
    identifier doi10.1175/JCLI3763.1
    journal fristpage2243
    journal lastpage2266
    treeJournal of Climate:;2006:;volume( 019 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian