YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Attributes of Several Methods for Detecting Discontinuities in Mean Temperature Series

    Source: Journal of Climate:;2006:;volume( 019 ):;issue: 005::page 838
    Author:
    DeGaetano, Arthur T.
    DOI: 10.1175/JCLI3662.1
    Publisher: American Meteorological Society
    Abstract: Simulated annual temperature series are used to compare seven homogenization procedures. The two that employ likelihood ratio tests routinely outperform other methods in their ability to identify modest (0.33°C; 0.6 standard deviation anomaly) shifts in the mean. The percentage of imposed shifts that are detected by these methods is similar to that based on tests that rely on a priori metadata information concerning the position of potential shifts. These methods, along with a two-phase regression approach, are also best at identifying and placing multiple shifts within a single time series. Although the regression procedure is better able to detect multiple breaks that are separated by relatively short time intervals, in its published form it suffers from a higher-than-expected Type I error rate. This was also found to be a problem with a metadata-based procedure currently in operational use. The likelihood tests are strongly influenced by the presence of trends in the difference series and short (<20 yr) series length. The ability of a given procedure to detect a discontinuity is predominately influenced by the magnitude of the discontinuity relative to the standard deviation of the data series being evaluated. Data series length, correlation between the test series and its associated reference series, and test series autocorrelation also influence test performance. These features were not considered in previous homogenization method comparisons. Discontinuities with magnitudes less than 0.6 times the standard deviation of the time series represent the lower limit for homogenization. Based on the most effective homogenization techniques, 10% of the 1.25 standard deviation discontinuities are likely to remain in climatic data series, unless reference station correlations are exceptional or quality station metadata are available.
    • Download: (701.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Attributes of Several Methods for Detecting Discontinuities in Mean Temperature Series

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4220769
    Collections
    • Journal of Climate

    Show full item record

    contributor authorDeGaetano, Arthur T.
    date accessioned2017-06-09T17:01:30Z
    date available2017-06-09T17:01:30Z
    date copyright2006/03/01
    date issued2006
    identifier issn0894-8755
    identifier otherams-78133.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4220769
    description abstractSimulated annual temperature series are used to compare seven homogenization procedures. The two that employ likelihood ratio tests routinely outperform other methods in their ability to identify modest (0.33°C; 0.6 standard deviation anomaly) shifts in the mean. The percentage of imposed shifts that are detected by these methods is similar to that based on tests that rely on a priori metadata information concerning the position of potential shifts. These methods, along with a two-phase regression approach, are also best at identifying and placing multiple shifts within a single time series. Although the regression procedure is better able to detect multiple breaks that are separated by relatively short time intervals, in its published form it suffers from a higher-than-expected Type I error rate. This was also found to be a problem with a metadata-based procedure currently in operational use. The likelihood tests are strongly influenced by the presence of trends in the difference series and short (<20 yr) series length. The ability of a given procedure to detect a discontinuity is predominately influenced by the magnitude of the discontinuity relative to the standard deviation of the data series being evaluated. Data series length, correlation between the test series and its associated reference series, and test series autocorrelation also influence test performance. These features were not considered in previous homogenization method comparisons. Discontinuities with magnitudes less than 0.6 times the standard deviation of the time series represent the lower limit for homogenization. Based on the most effective homogenization techniques, 10% of the 1.25 standard deviation discontinuities are likely to remain in climatic data series, unless reference station correlations are exceptional or quality station metadata are available.
    publisherAmerican Meteorological Society
    titleAttributes of Several Methods for Detecting Discontinuities in Mean Temperature Series
    typeJournal Paper
    journal volume19
    journal issue5
    journal titleJournal of Climate
    identifier doi10.1175/JCLI3662.1
    journal fristpage838
    journal lastpage853
    treeJournal of Climate:;2006:;volume( 019 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian