YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Principal Predictor Analysis: Application to the Lorenz System

    Source: Journal of Climate:;2006:;volume( 019 ):;issue: 004::page 579
    Author:
    Cannon, Alex J.
    DOI: 10.1175/JCLI3634.1
    Publisher: American Meteorological Society
    Abstract: Principal predictor analysis is a multivariate linear technique that fits between regression and canonical correlation analysis in terms of the complexity of its architecture. This study introduces a new neural network approach for performing nonlinear principal predictor analysis (NLPPA). NLPPA is applied to the Lorenz system of equations and is compared with nonlinear canonical correlation analysis (NLCCA) and linear multivariate models. Results suggest that NLPPA is capable of performing better than NLCCA when datasets are corrupted with noise. Also, NLPPA modes may be extracted in less time than NLCCA modes. NLPPA is recommended for prediction problems where a clear set of predictors and a clear set of predictands can be easily defined.
    • Download: (1.412Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Principal Predictor Analysis: Application to the Lorenz System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4220738
    Collections
    • Journal of Climate

    Show full item record

    contributor authorCannon, Alex J.
    date accessioned2017-06-09T17:01:25Z
    date available2017-06-09T17:01:25Z
    date copyright2006/02/01
    date issued2006
    identifier issn0894-8755
    identifier otherams-78105.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4220738
    description abstractPrincipal predictor analysis is a multivariate linear technique that fits between regression and canonical correlation analysis in terms of the complexity of its architecture. This study introduces a new neural network approach for performing nonlinear principal predictor analysis (NLPPA). NLPPA is applied to the Lorenz system of equations and is compared with nonlinear canonical correlation analysis (NLCCA) and linear multivariate models. Results suggest that NLPPA is capable of performing better than NLCCA when datasets are corrupted with noise. Also, NLPPA modes may be extracted in less time than NLCCA modes. NLPPA is recommended for prediction problems where a clear set of predictors and a clear set of predictands can be easily defined.
    publisherAmerican Meteorological Society
    titleNonlinear Principal Predictor Analysis: Application to the Lorenz System
    typeJournal Paper
    journal volume19
    journal issue4
    journal titleJournal of Climate
    identifier doi10.1175/JCLI3634.1
    journal fristpage579
    journal lastpage589
    treeJournal of Climate:;2006:;volume( 019 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian