YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Surface Contribution to Planetary Albedo Variability in Cryosphere Regions

    Source: Journal of Climate:;2005:;volume( 018 ):;issue: 024::page 5239
    Author:
    Qu, Xin
    ,
    Hall, Alex
    DOI: 10.1175/JCLI3555.1
    Publisher: American Meteorological Society
    Abstract: Climatological planetary albedo obtained from the International Satellite Cloud Climatology Project (ISCCP) D-series flux dataset is broken down into contributions from the surface and atmosphere in cryosphere regions. The atmosphere accounts for much more of climatological planetary albedo (≥75%) than the surface at all times of the year. The insignificance of the surface contribution over highly reflective cryosphere regions is attributed mostly to the damping effect of the atmosphere. The overlying atmosphere attenuates the surface?s contribution to climatological planetary albedo by reducing the number of solar photons initially reaching the surface and the number of photons initially reflected by the surface that actually reach the top of the atmosphere. The ISCCP datasets were also used to determine the relative contributions of the surface and atmosphere to seasonal and interannual planetary albedo variability in cryosphere regions. Even damped by the atmosphere to the same degree as in the climatological case, the surface contribution dominates the variability in planetary albedo on seasonal and interannual time scales. The surface accounts for about 75% of the change in climatological planetary albedo from one season to another with similar zenith angle and more than 50% of its interannual variability at nearly all times of the year, especially during seasons with extensive snow and sea ice extent. The dominance of the surface in planetary albedo variability is because surface albedo variability associated with snow and ice fluctuations is significantly larger than atmospheric albedo variability due to cloud fluctuations. The large effect of snow and ice variations on planetary albedo variability suggests that if cloud fields do not change much in a future warmer climate, a retreat of snow cover or sea ice would lead to a significant increase in net incoming solar radiation, resulting in an enhancement of high-latitude climate sensitivity.
    • Download: (1.311Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Surface Contribution to Planetary Albedo Variability in Cryosphere Regions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4220652
    Collections
    • Journal of Climate

    Show full item record

    contributor authorQu, Xin
    contributor authorHall, Alex
    date accessioned2017-06-09T17:01:10Z
    date available2017-06-09T17:01:10Z
    date copyright2005/12/01
    date issued2005
    identifier issn0894-8755
    identifier otherams-78028.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4220652
    description abstractClimatological planetary albedo obtained from the International Satellite Cloud Climatology Project (ISCCP) D-series flux dataset is broken down into contributions from the surface and atmosphere in cryosphere regions. The atmosphere accounts for much more of climatological planetary albedo (≥75%) than the surface at all times of the year. The insignificance of the surface contribution over highly reflective cryosphere regions is attributed mostly to the damping effect of the atmosphere. The overlying atmosphere attenuates the surface?s contribution to climatological planetary albedo by reducing the number of solar photons initially reaching the surface and the number of photons initially reflected by the surface that actually reach the top of the atmosphere. The ISCCP datasets were also used to determine the relative contributions of the surface and atmosphere to seasonal and interannual planetary albedo variability in cryosphere regions. Even damped by the atmosphere to the same degree as in the climatological case, the surface contribution dominates the variability in planetary albedo on seasonal and interannual time scales. The surface accounts for about 75% of the change in climatological planetary albedo from one season to another with similar zenith angle and more than 50% of its interannual variability at nearly all times of the year, especially during seasons with extensive snow and sea ice extent. The dominance of the surface in planetary albedo variability is because surface albedo variability associated with snow and ice fluctuations is significantly larger than atmospheric albedo variability due to cloud fluctuations. The large effect of snow and ice variations on planetary albedo variability suggests that if cloud fields do not change much in a future warmer climate, a retreat of snow cover or sea ice would lead to a significant increase in net incoming solar radiation, resulting in an enhancement of high-latitude climate sensitivity.
    publisherAmerican Meteorological Society
    titleSurface Contribution to Planetary Albedo Variability in Cryosphere Regions
    typeJournal Paper
    journal volume18
    journal issue24
    journal titleJournal of Climate
    identifier doi10.1175/JCLI3555.1
    journal fristpage5239
    journal lastpage5252
    treeJournal of Climate:;2005:;volume( 018 ):;issue: 024
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian