YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Evaluation of the Proposed Mechanism of the Adaptive Infrared Iris Hypothesis Using TRMM VIRS and PR Measurements

    Source: Journal of Climate:;2005:;volume( 018 ):;issue: 020::page 4185
    Author:
    Rapp, Anita D.
    ,
    Kummerow, Christian
    ,
    Berg, Wesley
    ,
    Griffith, Brian
    DOI: 10.1175/JCLI3528.1
    Publisher: American Meteorological Society
    Abstract: Significant controversy surrounds the adaptive infrared iris hypothesis put forth by Lindzen et al., whereby tropical anvil cirrus detrainment is hypothesized to decrease with increasing sea surface temperature (SST). This dependence would act as an iris, allowing more infrared radiation to escape into space and inhibiting changes in the surface temperature. This hypothesis assumes that increased precipitation efficiency in regions of higher sea surface temperatures will reduce cirrus detrainment. Tropical Rainfall Measuring Mission (TRMM) satellite measurements are used here to investigate the adaptive infrared iris hypothesis. Pixel-level Visible and Infrared Scanner (VIRS) 10.8-?m brightness temperature data and precipitation radar (PR) rain-rate data from TRMM are collocated and matched to determine individual convective cloud boundaries. Each cloudy pixel is then matched to the underlying SST. This study examines single- and multicore convective clouds separately to directly determine if a relationship exists between the size of convective clouds, their precipitation, and the underlying SSTs. In doing so, this study addresses some of the criticisms of the Lindzen et al. study by eliminating their more controversial method of relating bulk changes of cloud amount and SST across a large domain in the Tropics. The current analysis does not show any significant SST dependence of the ratio of cloud area to surface rainfall for deep convection in the tropical western and central Pacific. Results do, however, suggest that SST plays an important role in the ratio of cloud area and surface rainfall for warm rain processes. For clouds with brightness temperatures between 270 and 280 K, a net decrease in cloud area normalized by rainfall of 5% per degree SST was found.
    • Download: (1.385Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Evaluation of the Proposed Mechanism of the Adaptive Infrared Iris Hypothesis Using TRMM VIRS and PR Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4220624
    Collections
    • Journal of Climate

    Show full item record

    contributor authorRapp, Anita D.
    contributor authorKummerow, Christian
    contributor authorBerg, Wesley
    contributor authorGriffith, Brian
    date accessioned2017-06-09T17:01:03Z
    date available2017-06-09T17:01:03Z
    date copyright2005/10/01
    date issued2005
    identifier issn0894-8755
    identifier otherams-78002.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4220624
    description abstractSignificant controversy surrounds the adaptive infrared iris hypothesis put forth by Lindzen et al., whereby tropical anvil cirrus detrainment is hypothesized to decrease with increasing sea surface temperature (SST). This dependence would act as an iris, allowing more infrared radiation to escape into space and inhibiting changes in the surface temperature. This hypothesis assumes that increased precipitation efficiency in regions of higher sea surface temperatures will reduce cirrus detrainment. Tropical Rainfall Measuring Mission (TRMM) satellite measurements are used here to investigate the adaptive infrared iris hypothesis. Pixel-level Visible and Infrared Scanner (VIRS) 10.8-?m brightness temperature data and precipitation radar (PR) rain-rate data from TRMM are collocated and matched to determine individual convective cloud boundaries. Each cloudy pixel is then matched to the underlying SST. This study examines single- and multicore convective clouds separately to directly determine if a relationship exists between the size of convective clouds, their precipitation, and the underlying SSTs. In doing so, this study addresses some of the criticisms of the Lindzen et al. study by eliminating their more controversial method of relating bulk changes of cloud amount and SST across a large domain in the Tropics. The current analysis does not show any significant SST dependence of the ratio of cloud area to surface rainfall for deep convection in the tropical western and central Pacific. Results do, however, suggest that SST plays an important role in the ratio of cloud area and surface rainfall for warm rain processes. For clouds with brightness temperatures between 270 and 280 K, a net decrease in cloud area normalized by rainfall of 5% per degree SST was found.
    publisherAmerican Meteorological Society
    titleAn Evaluation of the Proposed Mechanism of the Adaptive Infrared Iris Hypothesis Using TRMM VIRS and PR Measurements
    typeJournal Paper
    journal volume18
    journal issue20
    journal titleJournal of Climate
    identifier doi10.1175/JCLI3528.1
    journal fristpage4185
    journal lastpage4194
    treeJournal of Climate:;2005:;volume( 018 ):;issue: 020
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian