YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Comparison of Total Precipitable Water between Reanalyses and NVAP

    Source: Journal of Climate:;2005:;volume( 018 ):;issue: 011::page 1790
    Author:
    Sudradjat, Arief
    ,
    Ferraro, Ralph R.
    ,
    Fiorino, Michael
    DOI: 10.1175/JCLI3379.1
    Publisher: American Meteorological Society
    Abstract: This study compares monthly total precipitable water (TPW) from the National Aeronautics and Space Administration (NASA) Water Vapor Project (NVAP) and reanalyses of the National Centers for Environmental Prediction (NCEP) (R-1), NCEP?Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP-II) (R-2), and the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) from January 1988 through December 1999. Based on the means, NVAP exhibits systematic wetter land regions relative to the other datasets reflecting differences in their analyses due to paucity in radiosonde observations. ERA-40 is wetter in the atmospheric convergence zones than the U.S. reanalyses and NVAP ranges in between. Differences in the annual cycle between the reanalyses (especially R-2) and NVAP are also noticeable over the tropical oceans. Analyses on the interannual variabilities show that the ENSO-related spatial pattern in ERA-40 follows more coherently that of NVAP than those of the U.S. reanalyses. The 1997/98 El Niño?s effect on TPW is shown to be strongest only in NVAP, R-1, and ERA-40 during the period of study. All the datasets show TPW decreases in the Tropics following the 1991 Mt. Pinatubo eruption. By subtracting SST-estimated TPW from the datasets, only NVAP and ERA-40 can well represent the spatial pattern of convergence and/or moist-air advection zones in the Tropics. Even though all the datasets are viable for water cycle and climate analyses with discrepancies (wetness and dryness) to be aware of, this study has found that NVAP and ERA-40 perform better than the U.S. reanalyses during the 12-yr period.
    • Download: (2.594Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Comparison of Total Precipitable Water between Reanalyses and NVAP

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4220461
    Collections
    • Journal of Climate

    Show full item record

    contributor authorSudradjat, Arief
    contributor authorFerraro, Ralph R.
    contributor authorFiorino, Michael
    date accessioned2017-06-09T17:00:38Z
    date available2017-06-09T17:00:38Z
    date copyright2005/06/01
    date issued2005
    identifier issn0894-8755
    identifier otherams-77857.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4220461
    description abstractThis study compares monthly total precipitable water (TPW) from the National Aeronautics and Space Administration (NASA) Water Vapor Project (NVAP) and reanalyses of the National Centers for Environmental Prediction (NCEP) (R-1), NCEP?Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP-II) (R-2), and the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) from January 1988 through December 1999. Based on the means, NVAP exhibits systematic wetter land regions relative to the other datasets reflecting differences in their analyses due to paucity in radiosonde observations. ERA-40 is wetter in the atmospheric convergence zones than the U.S. reanalyses and NVAP ranges in between. Differences in the annual cycle between the reanalyses (especially R-2) and NVAP are also noticeable over the tropical oceans. Analyses on the interannual variabilities show that the ENSO-related spatial pattern in ERA-40 follows more coherently that of NVAP than those of the U.S. reanalyses. The 1997/98 El Niño?s effect on TPW is shown to be strongest only in NVAP, R-1, and ERA-40 during the period of study. All the datasets show TPW decreases in the Tropics following the 1991 Mt. Pinatubo eruption. By subtracting SST-estimated TPW from the datasets, only NVAP and ERA-40 can well represent the spatial pattern of convergence and/or moist-air advection zones in the Tropics. Even though all the datasets are viable for water cycle and climate analyses with discrepancies (wetness and dryness) to be aware of, this study has found that NVAP and ERA-40 perform better than the U.S. reanalyses during the 12-yr period.
    publisherAmerican Meteorological Society
    titleA Comparison of Total Precipitable Water between Reanalyses and NVAP
    typeJournal Paper
    journal volume18
    journal issue11
    journal titleJournal of Climate
    identifier doi10.1175/JCLI3379.1
    journal fristpage1790
    journal lastpage1807
    treeJournal of Climate:;2005:;volume( 018 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian