YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Representation of Water Table Dynamics in a Land Surface Scheme. Part I: Model Development

    Source: Journal of Climate:;2005:;volume( 018 ):;issue: 012::page 1861
    Author:
    Yeh, Pat J-F.
    ,
    Eltahir, Elfatih A. B.
    DOI: 10.1175/JCLI3330.1
    Publisher: American Meteorological Society
    Abstract: Most of the current land surface parameterization schemes lack any representation of regional groundwater aquifers. Such a simplified representation of subsurface hydrological processes would result in significant errors in the predicted land surface states and fluxes especially for the shallow water table areas in humid regions. This study attempts to address this deficiency. To incorporate the water table dynamics into a land surface scheme, a lumped unconfined aquifer model is developed to represent the regional unconfined aquifer as a nonlinear reservoir, in which the aquifer simultaneously receives the recharge from the overlying soils and discharges runoff into streams. The aquifer model is linked to the soil model in the land surface scheme [Land Surface Transfer Scheme (LSX)] through the soil drainage flux. The total thickness of the unsaturated zone varies in response to the water table fluctuations, thereby interactively coupling the aquifer model with the soil model. The coupled model (called LSXGW) has been tested in Illinois for an 11-yr period from 1984 to 1994. The results show reasonable agreements with the observations. However, there are still secondary biases in the LSXGW simulation partially resulting from not accounting for the spatial variability of water table depth. The issue of subgrid variability of water table depth will be addressed in a companion paper.
    • Download: (1.347Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Representation of Water Table Dynamics in a Land Surface Scheme. Part I: Model Development

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4220409
    Collections
    • Journal of Climate

    Show full item record

    contributor authorYeh, Pat J-F.
    contributor authorEltahir, Elfatih A. B.
    date accessioned2017-06-09T17:00:28Z
    date available2017-06-09T17:00:28Z
    date copyright2005/06/01
    date issued2005
    identifier issn0894-8755
    identifier otherams-77810.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4220409
    description abstractMost of the current land surface parameterization schemes lack any representation of regional groundwater aquifers. Such a simplified representation of subsurface hydrological processes would result in significant errors in the predicted land surface states and fluxes especially for the shallow water table areas in humid regions. This study attempts to address this deficiency. To incorporate the water table dynamics into a land surface scheme, a lumped unconfined aquifer model is developed to represent the regional unconfined aquifer as a nonlinear reservoir, in which the aquifer simultaneously receives the recharge from the overlying soils and discharges runoff into streams. The aquifer model is linked to the soil model in the land surface scheme [Land Surface Transfer Scheme (LSX)] through the soil drainage flux. The total thickness of the unsaturated zone varies in response to the water table fluctuations, thereby interactively coupling the aquifer model with the soil model. The coupled model (called LSXGW) has been tested in Illinois for an 11-yr period from 1984 to 1994. The results show reasonable agreements with the observations. However, there are still secondary biases in the LSXGW simulation partially resulting from not accounting for the spatial variability of water table depth. The issue of subgrid variability of water table depth will be addressed in a companion paper.
    publisherAmerican Meteorological Society
    titleRepresentation of Water Table Dynamics in a Land Surface Scheme. Part I: Model Development
    typeJournal Paper
    journal volume18
    journal issue12
    journal titleJournal of Climate
    identifier doi10.1175/JCLI3330.1
    journal fristpage1861
    journal lastpage1880
    treeJournal of Climate:;2005:;volume( 018 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian