YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Relationships between Large Precipitating Systems and Atmospheric Factors at a Grid Scale

    Source: Journal of the Atmospheric Sciences:;2016:;Volume( 074 ):;issue: 002::page 531
    Author:
    Chen, Baohua
    ,
    Liu, Chuntao
    ,
    Mapes, Brian E.
    DOI: 10.1175/JAS-D-16-0049.1
    Publisher: American Meteorological Society
    Abstract: n this study, TRMM-observed precipitation in the tropics is decomposed according to the horizontal area of radar precipitation features, with special emphasis on large systems (rain area > 104 km2) that contribute roughly half of tropical rainfall. Statistical associations of rain-weighted radar precipitation feature (RPF) size distributions with atmospheric variables on the 1.5° grid of ERA-Interim data are explored. In one-predictor distributions, the association with total precipitable water vapor (TPWV) is the strongest, while relative humidity at low and midlevels and low-level wind shear are also positively related to large-RPF rain fraction. Standard CAPE and CIN variables computed from grid-mean thermodynamic profiles are only weakly related to the size of rain systems. Joint distributions over two variables are also reported. The relative importance of predictors varies over different regions. The eastern Pacific is distinctive for having large rain systems in environments with a moist boundary layer but a dry midtroposphere, with strong shallow wind shear and small CAPE. In contrast, the large-storm environment over the western Pacific is found to be moister in the whole troposphere, with relatively weaker wind shear and larger CAPE. Over tropical land, the Sahel and central Africa stand out as having a great fractional rainfall contributed by large RPFs. Their associated environment is characterized by lower TPWV but stronger shallow wind shear and larger CIN and CAPE, in comparison to the equatorial Amazon basin and the Maritime Continent. Based on these associations, statistical reconstructions of the geographical distribution of large-RPF rain fraction from grid-mean atmospheric predictors are attempted.
    • Download: (4.568Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Relationships between Large Precipitating Systems and Atmospheric Factors at a Grid Scale

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4220134
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorChen, Baohua
    contributor authorLiu, Chuntao
    contributor authorMapes, Brian E.
    date accessioned2017-06-09T16:59:35Z
    date available2017-06-09T16:59:35Z
    date copyright2017/02/01
    date issued2016
    identifier issn0022-4928
    identifier otherams-77562.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4220134
    description abstractn this study, TRMM-observed precipitation in the tropics is decomposed according to the horizontal area of radar precipitation features, with special emphasis on large systems (rain area > 104 km2) that contribute roughly half of tropical rainfall. Statistical associations of rain-weighted radar precipitation feature (RPF) size distributions with atmospheric variables on the 1.5° grid of ERA-Interim data are explored. In one-predictor distributions, the association with total precipitable water vapor (TPWV) is the strongest, while relative humidity at low and midlevels and low-level wind shear are also positively related to large-RPF rain fraction. Standard CAPE and CIN variables computed from grid-mean thermodynamic profiles are only weakly related to the size of rain systems. Joint distributions over two variables are also reported. The relative importance of predictors varies over different regions. The eastern Pacific is distinctive for having large rain systems in environments with a moist boundary layer but a dry midtroposphere, with strong shallow wind shear and small CAPE. In contrast, the large-storm environment over the western Pacific is found to be moister in the whole troposphere, with relatively weaker wind shear and larger CAPE. Over tropical land, the Sahel and central Africa stand out as having a great fractional rainfall contributed by large RPFs. Their associated environment is characterized by lower TPWV but stronger shallow wind shear and larger CIN and CAPE, in comparison to the equatorial Amazon basin and the Maritime Continent. Based on these associations, statistical reconstructions of the geographical distribution of large-RPF rain fraction from grid-mean atmospheric predictors are attempted.
    publisherAmerican Meteorological Society
    titleRelationships between Large Precipitating Systems and Atmospheric Factors at a Grid Scale
    typeJournal Paper
    journal volume74
    journal issue2
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-16-0049.1
    journal fristpage531
    journal lastpage552
    treeJournal of the Atmospheric Sciences:;2016:;Volume( 074 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian