YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Importance of the Shape of Cloud Droplet Size Distributions in Shallow Cumulus Clouds. Part II: Bulk Microphysics Simulations

    Source: Journal of the Atmospheric Sciences:;2016:;Volume( 074 ):;issue: 001::page 259
    Author:
    Igel, Adele L.
    ,
    van den Heever, Susan C.
    DOI: 10.1175/JAS-D-15-0383.1
    Publisher: American Meteorological Society
    Abstract: n this two-part study, relationships between the cloud gamma size distribution shape parameter, microphysical processes, and cloud characteristics of nonprecipitating shallow cumulus clouds are investigated using large-eddy simulations. In Part I, the dependence of the shape parameter (which is closely related to the distribution width) on cloud properties and processes was investigated. However, the distribution width also impacts cloud process rates and in turn cloud properties, and it is this aspect of the relationship that is explored in Part II and is discussed in the context of aerosol?cloud interactions. In simulations with a bulk microphysics scheme, it is found that the evaporation rates are much more sensitive to the value of the shape parameter than to the condensation rates. This is due to changes in both the rate of removal of mass and the rate of removal of fully evaporated droplets. As a result, cloud properties such as droplet number concentration, mean droplet diameter, and cloud fraction are strongly impacted by the value of the shape parameter, particularly in the subsaturated regions of the clouds. These changes can be on the same order of magnitude as changes due to increasing or decreasing the aerosol concentration by a factor of 16. Particular attention is paid to the impact of the shape parameter on cloud albedo. The cloud albedo increases as the shape parameter is increased as a result of the changes in evaporation. The magnitude of the increase is about 4 times larger than previous estimates. However, this increase in cloud albedo is largely offset by a decrease in the cloud fraction, which results in only small increases to the domain-average albedo. Implications for the aerosol relative dispersion effect are discussed.
    • Download: (1.805Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Importance of the Shape of Cloud Droplet Size Distributions in Shallow Cumulus Clouds. Part II: Bulk Microphysics Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4220105
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorIgel, Adele L.
    contributor authorvan den Heever, Susan C.
    date accessioned2017-06-09T16:59:29Z
    date available2017-06-09T16:59:29Z
    date copyright2017/01/01
    date issued2016
    identifier issn0022-4928
    identifier otherams-77536.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4220105
    description abstractn this two-part study, relationships between the cloud gamma size distribution shape parameter, microphysical processes, and cloud characteristics of nonprecipitating shallow cumulus clouds are investigated using large-eddy simulations. In Part I, the dependence of the shape parameter (which is closely related to the distribution width) on cloud properties and processes was investigated. However, the distribution width also impacts cloud process rates and in turn cloud properties, and it is this aspect of the relationship that is explored in Part II and is discussed in the context of aerosol?cloud interactions. In simulations with a bulk microphysics scheme, it is found that the evaporation rates are much more sensitive to the value of the shape parameter than to the condensation rates. This is due to changes in both the rate of removal of mass and the rate of removal of fully evaporated droplets. As a result, cloud properties such as droplet number concentration, mean droplet diameter, and cloud fraction are strongly impacted by the value of the shape parameter, particularly in the subsaturated regions of the clouds. These changes can be on the same order of magnitude as changes due to increasing or decreasing the aerosol concentration by a factor of 16. Particular attention is paid to the impact of the shape parameter on cloud albedo. The cloud albedo increases as the shape parameter is increased as a result of the changes in evaporation. The magnitude of the increase is about 4 times larger than previous estimates. However, this increase in cloud albedo is largely offset by a decrease in the cloud fraction, which results in only small increases to the domain-average albedo. Implications for the aerosol relative dispersion effect are discussed.
    publisherAmerican Meteorological Society
    titleThe Importance of the Shape of Cloud Droplet Size Distributions in Shallow Cumulus Clouds. Part II: Bulk Microphysics Simulations
    typeJournal Paper
    journal volume74
    journal issue1
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-15-0383.1
    journal fristpage259
    journal lastpage273
    treeJournal of the Atmospheric Sciences:;2016:;Volume( 074 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian