YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    What Flow Conditions are Conducive to Banner Cloud Formation?

    Source: Journal of the Atmospheric Sciences:;2016:;Volume( 073 ):;issue: 006::page 2385
    Author:
    Prestel, Isabelle
    ,
    Wirth, Volkmar
    DOI: 10.1175/JAS-D-15-0319.1
    Publisher: American Meteorological Society
    Abstract: anner clouds are clouds that are attached to the leeward slope of a steep mountain. Their formation is essentially due to strong Lagrangian uplift of air in the lee of the mountain. However, little is known about the flow regime in which banner clouds can be expected to occur. The present study addresses this question through numerical simulations of flow past idealized orography. Systematic sets of simulations are carried out exploring the parameter space spanned by two dimensionless numbers, which represent the aspect ratio of the mountain and the stratification of the flow. The simulations include both two-dimensional flow past two-dimensional orography and three-dimensional flow past three-dimensional orography.Regarding flow separation from the surface, both the two- and the three-dimensional simulations show the characteristic regime behavior that has previously been found in laboratory experiments for two-dimensional orography. Flow separation is observed in two of the three regimes, namely in the ?leeside separation regime,? which occurs preferably for steep mountains in weakly stratified flow, and in the ?postwave separation regime,? which requires increased stratification. The physical mechanism for the former is boundary layer friction, while the latter may also occur for inviscid flow. However, flow separation is only a necessary, not sufficient condition for banner cloud formation. The vertical uplift and its leeward?windward asymmetry show that banner clouds cannot form in the two-dimensional simulations. In addition, even in the three-dimensional simulations they can only be expected in a small part of the parameter space corresponding to steep three-dimensional orography in weakly stratified flow.
    • Download: (3.644Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      What Flow Conditions are Conducive to Banner Cloud Formation?

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4220062
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorPrestel, Isabelle
    contributor authorWirth, Volkmar
    date accessioned2017-06-09T16:59:19Z
    date available2017-06-09T16:59:19Z
    date copyright2016/06/01
    date issued2016
    identifier issn0022-4928
    identifier otherams-77498.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4220062
    description abstractanner clouds are clouds that are attached to the leeward slope of a steep mountain. Their formation is essentially due to strong Lagrangian uplift of air in the lee of the mountain. However, little is known about the flow regime in which banner clouds can be expected to occur. The present study addresses this question through numerical simulations of flow past idealized orography. Systematic sets of simulations are carried out exploring the parameter space spanned by two dimensionless numbers, which represent the aspect ratio of the mountain and the stratification of the flow. The simulations include both two-dimensional flow past two-dimensional orography and three-dimensional flow past three-dimensional orography.Regarding flow separation from the surface, both the two- and the three-dimensional simulations show the characteristic regime behavior that has previously been found in laboratory experiments for two-dimensional orography. Flow separation is observed in two of the three regimes, namely in the ?leeside separation regime,? which occurs preferably for steep mountains in weakly stratified flow, and in the ?postwave separation regime,? which requires increased stratification. The physical mechanism for the former is boundary layer friction, while the latter may also occur for inviscid flow. However, flow separation is only a necessary, not sufficient condition for banner cloud formation. The vertical uplift and its leeward?windward asymmetry show that banner clouds cannot form in the two-dimensional simulations. In addition, even in the three-dimensional simulations they can only be expected in a small part of the parameter space corresponding to steep three-dimensional orography in weakly stratified flow.
    publisherAmerican Meteorological Society
    titleWhat Flow Conditions are Conducive to Banner Cloud Formation?
    typeJournal Paper
    journal volume73
    journal issue6
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-15-0319.1
    journal fristpage2385
    journal lastpage2402
    treeJournal of the Atmospheric Sciences:;2016:;Volume( 073 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian