YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Lagrangian View of Moisture Dynamics during DYNAMO

    Source: Journal of the Atmospheric Sciences:;2015:;Volume( 073 ):;issue: 005::page 1967
    Author:
    Hannah, Walter M.
    ,
    Mapes, Brian E.
    ,
    Elsaesser, Gregory S.
    DOI: 10.1175/JAS-D-15-0243.1
    Publisher: American Meteorological Society
    Abstract: olumn water vapor (CWV) is studied using data from the Dynamics of the Madden?Julian Oscillation (DYNAMO) field experiment. A distinctive moist mode in tropical CWV probability distributions motivates the work. The Lagrangian CWV tendency (LCT) leaves together the compensating tendencies from phase change and vertical advection, quantities that cannot be measured accurately by themselves, to emphasize their small residual, which governs evolution. The slope of LCT versus CWV suggests that the combined effects of phase changes and vertical advection act as a robust positive feedback on CWV variations, while evaporation adds a broadscale positive tendency. Analyzed diabatic heating profiles become deeper and stronger as CWV increases. Stratiform heating is found to accompany Lagrangian drying at high CWV, but its association with deep convection makes the mean LCT positive at high CWV. Lower-tropospheric wind convergence is found in high-CWV air masses, acting to shrink their area in time. When ECMWF heating profile indices and S-Pol and TRMM radar data are binned jointly by CWV and LCT, bottom-heavy heating associated with shallow and congestus convection is found in columns transitioning through Lagrangian moistening into the humid, high-rain-rate mode of the CWV distribution near 50?55 mm, while nonraining columns and columns with widespread stratiform precipitation are preferentially associated with Lagrangian drying. Interpolated sounding-array data produce substantial errors in LCT budgets, because horizontal advection is inaccurate without satellite input to constrain horizontal gradients.
    • Download: (4.471Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Lagrangian View of Moisture Dynamics during DYNAMO

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4220007
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHannah, Walter M.
    contributor authorMapes, Brian E.
    contributor authorElsaesser, Gregory S.
    date accessioned2017-06-09T16:59:07Z
    date available2017-06-09T16:59:07Z
    date copyright2016/05/01
    date issued2015
    identifier issn0022-4928
    identifier otherams-77448.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4220007
    description abstractolumn water vapor (CWV) is studied using data from the Dynamics of the Madden?Julian Oscillation (DYNAMO) field experiment. A distinctive moist mode in tropical CWV probability distributions motivates the work. The Lagrangian CWV tendency (LCT) leaves together the compensating tendencies from phase change and vertical advection, quantities that cannot be measured accurately by themselves, to emphasize their small residual, which governs evolution. The slope of LCT versus CWV suggests that the combined effects of phase changes and vertical advection act as a robust positive feedback on CWV variations, while evaporation adds a broadscale positive tendency. Analyzed diabatic heating profiles become deeper and stronger as CWV increases. Stratiform heating is found to accompany Lagrangian drying at high CWV, but its association with deep convection makes the mean LCT positive at high CWV. Lower-tropospheric wind convergence is found in high-CWV air masses, acting to shrink their area in time. When ECMWF heating profile indices and S-Pol and TRMM radar data are binned jointly by CWV and LCT, bottom-heavy heating associated with shallow and congestus convection is found in columns transitioning through Lagrangian moistening into the humid, high-rain-rate mode of the CWV distribution near 50?55 mm, while nonraining columns and columns with widespread stratiform precipitation are preferentially associated with Lagrangian drying. Interpolated sounding-array data produce substantial errors in LCT budgets, because horizontal advection is inaccurate without satellite input to constrain horizontal gradients.
    publisherAmerican Meteorological Society
    titleA Lagrangian View of Moisture Dynamics during DYNAMO
    typeJournal Paper
    journal volume73
    journal issue5
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-15-0243.1
    journal fristpage1967
    journal lastpage1985
    treeJournal of the Atmospheric Sciences:;2015:;Volume( 073 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian