Effect of Stratiform Heating on the Planetary-Scale Organization of Tropical ConvectionSource: Journal of the Atmospheric Sciences:;2015:;Volume( 073 ):;issue: 001::page 371DOI: 10.1175/JAS-D-15-0178.1Publisher: American Meteorological Society
Abstract: t is widely recognized that stratiform heating contributes significantly to tropical rainfall and to the dynamics of tropical convective systems by inducing a front-to-rear tilt in the heating profile. Precipitating stratiform anvils that form from deep convection play a central role in the dynamics of tropical mesoscale convective systems. The wide spreading of downdrafts that are induced by the evaporation of stratiform rain and originate from in the lower troposphere strengthens the recirculation of subsiding air in the neighborhood of the convection center and triggers cold pools and gravity currents in the boundary layer, leading to further lifting. Here, aquaplanet simulations with a warm pool?like surface forcing, based on a coarse-resolution GCM of approximately 170-km grid mesh, coupled with a stochastic multicloud parameterization, are used to demonstrate the importance of stratiform heating for the organization of convection on planetary and intraseasonal scales. When the model parameters, which control the heating fraction and decay time scale of the stratiform clouds, are set to produce higher stratiform heating, the model produces low-frequency and planetary-scale MJO-like wave disturbances, while parameters associated with lower-to-moderate stratiform heating yield mainly synoptic-scale convectively coupled Kelvin-like waves. Furthermore, it is shown that, when the effect of stratiform downdrafts is reduced in the model, the MJO-scale organization is weakened, and a transition to synoptic-scale organization appears despite the use of larger stratiform heating parameters. Rooted in the stratiform instability, it is conjectured here that the strength and extent of stratiform downdrafts are key contributors to the scale selection of convective organizations, perhaps with mechanisms that are, in essence, similar to those of mesoscale convective systems.
|
Collections
Show full item record
contributor author | Deng, Qiang | |
contributor author | Khouider, Boualem | |
contributor author | Majda, Andrew J. | |
contributor author | Ajayamohan, R. S. | |
date accessioned | 2017-06-09T16:58:55Z | |
date available | 2017-06-09T16:58:55Z | |
date copyright | 2016/01/01 | |
date issued | 2015 | |
identifier issn | 0022-4928 | |
identifier other | ams-77400.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4219953 | |
description abstract | t is widely recognized that stratiform heating contributes significantly to tropical rainfall and to the dynamics of tropical convective systems by inducing a front-to-rear tilt in the heating profile. Precipitating stratiform anvils that form from deep convection play a central role in the dynamics of tropical mesoscale convective systems. The wide spreading of downdrafts that are induced by the evaporation of stratiform rain and originate from in the lower troposphere strengthens the recirculation of subsiding air in the neighborhood of the convection center and triggers cold pools and gravity currents in the boundary layer, leading to further lifting. Here, aquaplanet simulations with a warm pool?like surface forcing, based on a coarse-resolution GCM of approximately 170-km grid mesh, coupled with a stochastic multicloud parameterization, are used to demonstrate the importance of stratiform heating for the organization of convection on planetary and intraseasonal scales. When the model parameters, which control the heating fraction and decay time scale of the stratiform clouds, are set to produce higher stratiform heating, the model produces low-frequency and planetary-scale MJO-like wave disturbances, while parameters associated with lower-to-moderate stratiform heating yield mainly synoptic-scale convectively coupled Kelvin-like waves. Furthermore, it is shown that, when the effect of stratiform downdrafts is reduced in the model, the MJO-scale organization is weakened, and a transition to synoptic-scale organization appears despite the use of larger stratiform heating parameters. Rooted in the stratiform instability, it is conjectured here that the strength and extent of stratiform downdrafts are key contributors to the scale selection of convective organizations, perhaps with mechanisms that are, in essence, similar to those of mesoscale convective systems. | |
publisher | American Meteorological Society | |
title | Effect of Stratiform Heating on the Planetary-Scale Organization of Tropical Convection | |
type | Journal Paper | |
journal volume | 73 | |
journal issue | 1 | |
journal title | Journal of the Atmospheric Sciences | |
identifier doi | 10.1175/JAS-D-15-0178.1 | |
journal fristpage | 371 | |
journal lastpage | 392 | |
tree | Journal of the Atmospheric Sciences:;2015:;Volume( 073 ):;issue: 001 | |
contenttype | Fulltext |