YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Longitudinal Variation of Equatorial Waves due to Propagation on a Varying Zonal Flow

    Source: Journal of the Atmospheric Sciences:;2015:;Volume( 073 ):;issue: 002::page 605
    Author:
    Hoskins, Brian J.
    ,
    Yang, Gui-Ying
    DOI: 10.1175/JAS-D-15-0167.1
    Publisher: American Meteorological Society
    Abstract: he general 1D theory of waves propagating on a zonally varying flow is developed from basic wave theory, and equations are derived for the variation of wavenumber and energy along ray paths. Different categories of behavior are found, depending on the sign of the group velocity cg and a wave property B. For B positive, the wave energy and the wavenumber vary in the same sense, with maxima in relative easterlies or westerlies, depending on the sign of cg. Also the wave accumulation of Webster and Chang occurs where cg goes to zero. However, for B negative, they behave in opposite senses and wave accumulation does not occur. The zonal propagation of the gravest equatorial waves is analyzed in detail using the theory. For nondispersive Kelvin waves, B reduces to 2, and an analytic solution is possible. For all the waves considered, B is positive, except for the westward-moving mixed Rossby?gravity (WMRG) wave, which can have negative B as well as positive B.Comparison is made between the observed climatologies of the individual equatorial waves and the result of pure propagation on the climatological upper-tropospheric flow. The Kelvin wave distribution is in remarkable agreement, considering the approximations made. Some aspects of the WMRG and Rossby wave distributions are also in qualitative agreement. However, the observed maxima in these waves in the winter westerlies in the eastern Pacific and Atlantic Oceans are generally not in accord with the theory. This is consistent with the importance of the sources of equatorial waves in these westerly duct regions due to higher-latitude wave activity.
    • Download: (16.40Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Longitudinal Variation of Equatorial Waves due to Propagation on a Varying Zonal Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219947
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHoskins, Brian J.
    contributor authorYang, Gui-Ying
    date accessioned2017-06-09T16:58:54Z
    date available2017-06-09T16:58:54Z
    date copyright2016/02/01
    date issued2015
    identifier issn0022-4928
    identifier otherams-77394.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219947
    description abstracthe general 1D theory of waves propagating on a zonally varying flow is developed from basic wave theory, and equations are derived for the variation of wavenumber and energy along ray paths. Different categories of behavior are found, depending on the sign of the group velocity cg and a wave property B. For B positive, the wave energy and the wavenumber vary in the same sense, with maxima in relative easterlies or westerlies, depending on the sign of cg. Also the wave accumulation of Webster and Chang occurs where cg goes to zero. However, for B negative, they behave in opposite senses and wave accumulation does not occur. The zonal propagation of the gravest equatorial waves is analyzed in detail using the theory. For nondispersive Kelvin waves, B reduces to 2, and an analytic solution is possible. For all the waves considered, B is positive, except for the westward-moving mixed Rossby?gravity (WMRG) wave, which can have negative B as well as positive B.Comparison is made between the observed climatologies of the individual equatorial waves and the result of pure propagation on the climatological upper-tropospheric flow. The Kelvin wave distribution is in remarkable agreement, considering the approximations made. Some aspects of the WMRG and Rossby wave distributions are also in qualitative agreement. However, the observed maxima in these waves in the winter westerlies in the eastern Pacific and Atlantic Oceans are generally not in accord with the theory. This is consistent with the importance of the sources of equatorial waves in these westerly duct regions due to higher-latitude wave activity.
    publisherAmerican Meteorological Society
    titleThe Longitudinal Variation of Equatorial Waves due to Propagation on a Varying Zonal Flow
    typeJournal Paper
    journal volume73
    journal issue2
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-15-0167.1
    journal fristpage605
    journal lastpage620
    treeJournal of the Atmospheric Sciences:;2015:;Volume( 073 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian