YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Clouds and Water Vapor in the Tropical Tropopause Transition Layer over Mesoscale Convective Systems

    Source: Journal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 012::page 4739
    Author:
    Virts, Katrina S.
    ,
    Houze, Robert A.
    DOI: 10.1175/JAS-D-15-0122.1
    Publisher: American Meteorological Society
    Abstract: bservations from A-Train satellites and other datasets show that mesoscale convective systems (MCSs) affect the water vapor and ice content of the tropical tropopause transition layer (TTL). The largest MCSs with radar reflectivity characteristics consistent with the presence of large stratiform and anvil regions have the greatest impact. Most MCSs are associated with clouds in the TTL. Composites in MCS-relative coordinates indicate enhanced cloudiness and ice water content (IWC) extending toward the cold-point tropopause (CPT), particularly in large and connected MCSs. Widespread anvils in the lower TTL are evident in the peak cloudiness diverging outward at those levels. Upper-tropospheric water vapor concentrations are enhanced near MCSs. Close to the centers of MCSs, water vapor is suppressed at TTL base, likely because of the combined effects of reduced moistening or dehydration at the higher TTL relative humidities and subsidence above cloud top. Weak moistening is observed near the CPT, consistent with sublimation of ice crystals at the tops of the deepest MCSs. In the outflow region, moistening is observed in the lower TTL near the largest MCSs. Enhanced water vapor in the upper troposphere and lower TTL extends beyond the area of substantially enhanced cloudiness and IWC, in agreement with the observed radial outflow, indicating that MCSs are injecting water vapor into the environment and consistent with the possibility that MCS development may be favored by a premoistened environment.
    • Download: (1.681Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Clouds and Water Vapor in the Tropical Tropopause Transition Layer over Mesoscale Convective Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219909
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorVirts, Katrina S.
    contributor authorHouze, Robert A.
    date accessioned2017-06-09T16:58:44Z
    date available2017-06-09T16:58:44Z
    date copyright2015/12/01
    date issued2015
    identifier issn0022-4928
    identifier otherams-77360.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219909
    description abstractbservations from A-Train satellites and other datasets show that mesoscale convective systems (MCSs) affect the water vapor and ice content of the tropical tropopause transition layer (TTL). The largest MCSs with radar reflectivity characteristics consistent with the presence of large stratiform and anvil regions have the greatest impact. Most MCSs are associated with clouds in the TTL. Composites in MCS-relative coordinates indicate enhanced cloudiness and ice water content (IWC) extending toward the cold-point tropopause (CPT), particularly in large and connected MCSs. Widespread anvils in the lower TTL are evident in the peak cloudiness diverging outward at those levels. Upper-tropospheric water vapor concentrations are enhanced near MCSs. Close to the centers of MCSs, water vapor is suppressed at TTL base, likely because of the combined effects of reduced moistening or dehydration at the higher TTL relative humidities and subsidence above cloud top. Weak moistening is observed near the CPT, consistent with sublimation of ice crystals at the tops of the deepest MCSs. In the outflow region, moistening is observed in the lower TTL near the largest MCSs. Enhanced water vapor in the upper troposphere and lower TTL extends beyond the area of substantially enhanced cloudiness and IWC, in agreement with the observed radial outflow, indicating that MCSs are injecting water vapor into the environment and consistent with the possibility that MCS development may be favored by a premoistened environment.
    publisherAmerican Meteorological Society
    titleClouds and Water Vapor in the Tropical Tropopause Transition Layer over Mesoscale Convective Systems
    typeJournal Paper
    journal volume72
    journal issue12
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-15-0122.1
    journal fristpage4739
    journal lastpage4753
    treeJournal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian