YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity of Real-Data Simulations of the 3 May 1999 Oklahoma City Tornadic Supercell and Associated Tornadoes to Multimoment Microphysics. Part II: Analysis of Buoyancy and Dynamic Pressure Forces in Simulated Tornado-Like Vortices

    Source: Journal of the Atmospheric Sciences:;2015:;Volume( 073 ):;issue: 003::page 1039
    Author:
    Dawson, Daniel T.
    ,
    Xue, Ming
    ,
    Shapiro, Alan
    ,
    Milbrandt, Jason A.
    ,
    Schenkman, Alexander D.
    DOI: 10.1175/JAS-D-15-0114.1
    Publisher: American Meteorological Society
    Abstract: ortex stretching by intense upward accelerations is a critical process for tornadogenesis and maintenance. Two high-resolution (250-m grid spacing) real-data simulations of the 3 May 1999 Oklahoma City, Oklahoma, supercell and associated tornadoes, using single- and triple-moment microphysics parameterization schemes, respectively, are examined. Microphysical, thermodynamic, and dynamic impacts on the vertical accelerations near and within simulated tornado-like vortices (TLVs) are analyzed. Systematic differences in behavior of the TLVS between the two experiments are found; the TLV in the triple-moment simulation is substantially more intense and longer lived than in the single-moment case. The triple-moment scheme in this case produces less rain and hail mass in the low levels and drop size distributions of rain shifted toward larger drops, relative to the single-moment scheme, leading to less latent cooling and warmer outflow. Trajectory analyses reveal that more parcels entering the TLV in the triple-moment simulation have a history of dynamically induced descent, whereas buoyantly driven descent is more prevalent in the single-moment experiment. It is found that the intensity and longevity of the TLV are tied to weaker negative or neutral thermal buoyancy in the air flowing into the TLV in the triple-moment case, consistent with previous observational and modeling studies. Finally, the contribution to buoyancy from pressure perturbations is found to be of prime importance within the TLV, where strong negative pressure perturbations lead to substantial positive buoyancy. This contribution compensates for the slight negative thermal buoyancy and negative dynamic pressure gradient acceleration in the triple-moment case.
    • Download: (17.23Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity of Real-Data Simulations of the 3 May 1999 Oklahoma City Tornadic Supercell and Associated Tornadoes to Multimoment Microphysics. Part II: Analysis of Buoyancy and Dynamic Pressure Forces in Simulated Tornado-Like Vortices

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219905
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorDawson, Daniel T.
    contributor authorXue, Ming
    contributor authorShapiro, Alan
    contributor authorMilbrandt, Jason A.
    contributor authorSchenkman, Alexander D.
    date accessioned2017-06-09T16:58:43Z
    date available2017-06-09T16:58:43Z
    date copyright2016/03/01
    date issued2015
    identifier issn0022-4928
    identifier otherams-77356.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219905
    description abstractortex stretching by intense upward accelerations is a critical process for tornadogenesis and maintenance. Two high-resolution (250-m grid spacing) real-data simulations of the 3 May 1999 Oklahoma City, Oklahoma, supercell and associated tornadoes, using single- and triple-moment microphysics parameterization schemes, respectively, are examined. Microphysical, thermodynamic, and dynamic impacts on the vertical accelerations near and within simulated tornado-like vortices (TLVs) are analyzed. Systematic differences in behavior of the TLVS between the two experiments are found; the TLV in the triple-moment simulation is substantially more intense and longer lived than in the single-moment case. The triple-moment scheme in this case produces less rain and hail mass in the low levels and drop size distributions of rain shifted toward larger drops, relative to the single-moment scheme, leading to less latent cooling and warmer outflow. Trajectory analyses reveal that more parcels entering the TLV in the triple-moment simulation have a history of dynamically induced descent, whereas buoyantly driven descent is more prevalent in the single-moment experiment. It is found that the intensity and longevity of the TLV are tied to weaker negative or neutral thermal buoyancy in the air flowing into the TLV in the triple-moment case, consistent with previous observational and modeling studies. Finally, the contribution to buoyancy from pressure perturbations is found to be of prime importance within the TLV, where strong negative pressure perturbations lead to substantial positive buoyancy. This contribution compensates for the slight negative thermal buoyancy and negative dynamic pressure gradient acceleration in the triple-moment case.
    publisherAmerican Meteorological Society
    titleSensitivity of Real-Data Simulations of the 3 May 1999 Oklahoma City Tornadic Supercell and Associated Tornadoes to Multimoment Microphysics. Part II: Analysis of Buoyancy and Dynamic Pressure Forces in Simulated Tornado-Like Vortices
    typeJournal Paper
    journal volume73
    journal issue3
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-15-0114.1
    journal fristpage1039
    journal lastpage1061
    treeJournal of the Atmospheric Sciences:;2015:;Volume( 073 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian