YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Gross Moist Stability Assessment during TOGA COARE: Various Interpretations of Gross Moist Stability

    Source: Journal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 011::page 4148
    Author:
    Inoue, Kuniaki
    ,
    Back, Larissa E.
    DOI: 10.1175/JAS-D-15-0092.1
    Publisher: American Meteorological Society
    Abstract: aily averaged TOGA COARE data are analyzed to investigate the convective amplification/decay mechanisms. The gross moist stability (GMS), which represents moist static energy (MSE) export efficiency by large-scale circulations associated with the convection, is studied together with two quantities, called the critical GMS (a ratio of diabatic forcing to the convective intensity) and the drying efficiency [a version of the effective GMS (GMS minus critical GMS)]. The analyses reveal that convection intensifies (decays) via negative (positive) drying efficiency.The authors illustrate that variability of the drying efficiency during the convective amplifying phase is predominantly explained by the vertical MSE advection (or vertical GMS), which imports MSE via bottom-heavy vertical velocity profiles (associated with negative vertical GMS) and eventually starts exporting MSE via top-heavy profiles (associated with positive vertical GMS). The variability of the drying efficiency during the decaying phase is, in contrast, explained by the horizontal MSE advection. The critical GMS, which is moistening efficiency due to the diabatic forcing, is broadly constant throughout the convective life cycle, indicating that the diabatic forcing always tends to destabilize the convective system in a constant manner.The authors propose various ways of computing quasi-time-independent ?characteristic GMS? and demonstrate that all of them are equivalent and can be interpreted as (i) the critical GMS, (ii) the GMS at the maximum precipitation, and (iii) a combination of feedback constants between the radiation, evaporation, and convection. Those interpretations indicate that each convective life cycle is a fluctuation of rapidly changing GMS around slowly changing characteristic GMS.
    • Download: (1.407Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Gross Moist Stability Assessment during TOGA COARE: Various Interpretations of Gross Moist Stability

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219890
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorInoue, Kuniaki
    contributor authorBack, Larissa E.
    date accessioned2017-06-09T16:58:40Z
    date available2017-06-09T16:58:40Z
    date copyright2015/11/01
    date issued2015
    identifier issn0022-4928
    identifier otherams-77342.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219890
    description abstractaily averaged TOGA COARE data are analyzed to investigate the convective amplification/decay mechanisms. The gross moist stability (GMS), which represents moist static energy (MSE) export efficiency by large-scale circulations associated with the convection, is studied together with two quantities, called the critical GMS (a ratio of diabatic forcing to the convective intensity) and the drying efficiency [a version of the effective GMS (GMS minus critical GMS)]. The analyses reveal that convection intensifies (decays) via negative (positive) drying efficiency.The authors illustrate that variability of the drying efficiency during the convective amplifying phase is predominantly explained by the vertical MSE advection (or vertical GMS), which imports MSE via bottom-heavy vertical velocity profiles (associated with negative vertical GMS) and eventually starts exporting MSE via top-heavy profiles (associated with positive vertical GMS). The variability of the drying efficiency during the decaying phase is, in contrast, explained by the horizontal MSE advection. The critical GMS, which is moistening efficiency due to the diabatic forcing, is broadly constant throughout the convective life cycle, indicating that the diabatic forcing always tends to destabilize the convective system in a constant manner.The authors propose various ways of computing quasi-time-independent ?characteristic GMS? and demonstrate that all of them are equivalent and can be interpreted as (i) the critical GMS, (ii) the GMS at the maximum precipitation, and (iii) a combination of feedback constants between the radiation, evaporation, and convection. Those interpretations indicate that each convective life cycle is a fluctuation of rapidly changing GMS around slowly changing characteristic GMS.
    publisherAmerican Meteorological Society
    titleGross Moist Stability Assessment during TOGA COARE: Various Interpretations of Gross Moist Stability
    typeJournal Paper
    journal volume72
    journal issue11
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-15-0092.1
    journal fristpage4148
    journal lastpage4166
    treeJournal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian