YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Large-Eddy Simulations and Damped-Oscillator Models of the Unsteady Ekman Boundary Layer

    Source: Journal of the Atmospheric Sciences:;2015:;Volume( 073 ):;issue: 001::page 25
    Author:
    Momen, Mostafa
    ,
    Bou-Zeid, Elie
    DOI: 10.1175/JAS-D-15-0038.1
    Publisher: American Meteorological Society
    Abstract: he Ekman boundary layer (EBL) is a central problem in geophysical fluid dynamics that emerges when the pressure gradient force, the Coriolis force, and the frictional force interact in a flow. The unsteady version of the problem, which occurs when these forces are not in equilibrium, is solvable analytically only for a limited set of forcing variability regimes, and the resulting solutions are intricate and not always easy to interpret. In this paper, large-eddy simulations (LESs) of neutral atmospheric EBLs are conducted under various unsteady forcings to reveal the range of physical characteristics of the flow. Subsequently, it is demonstrated that the dynamics of the unsteady EBL can be reduced to a second-order ordinary differential equation that is very similar to the dynamical equation of a damped oscillator, such as a mass?spring?damper system. The validation of the proposed reduced model is performed by comparing its analytical solutions to LES results, revealing very good agreement. The reduced model can be solved for a wide range of variable forcing conditions, and this feature is exploited in the paper to elucidate the physical origin of the inertia (mass), energy storage (spring), and energy dissipation (damper) attributes of Ekman flows.
    • Download: (1.705Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Large-Eddy Simulations and Damped-Oscillator Models of the Unsteady Ekman Boundary Layer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219842
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorMomen, Mostafa
    contributor authorBou-Zeid, Elie
    date accessioned2017-06-09T16:58:30Z
    date available2017-06-09T16:58:30Z
    date copyright2016/01/01
    date issued2015
    identifier issn0022-4928
    identifier otherams-77300.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219842
    description abstracthe Ekman boundary layer (EBL) is a central problem in geophysical fluid dynamics that emerges when the pressure gradient force, the Coriolis force, and the frictional force interact in a flow. The unsteady version of the problem, which occurs when these forces are not in equilibrium, is solvable analytically only for a limited set of forcing variability regimes, and the resulting solutions are intricate and not always easy to interpret. In this paper, large-eddy simulations (LESs) of neutral atmospheric EBLs are conducted under various unsteady forcings to reveal the range of physical characteristics of the flow. Subsequently, it is demonstrated that the dynamics of the unsteady EBL can be reduced to a second-order ordinary differential equation that is very similar to the dynamical equation of a damped oscillator, such as a mass?spring?damper system. The validation of the proposed reduced model is performed by comparing its analytical solutions to LES results, revealing very good agreement. The reduced model can be solved for a wide range of variable forcing conditions, and this feature is exploited in the paper to elucidate the physical origin of the inertia (mass), energy storage (spring), and energy dissipation (damper) attributes of Ekman flows.
    publisherAmerican Meteorological Society
    titleLarge-Eddy Simulations and Damped-Oscillator Models of the Unsteady Ekman Boundary Layer
    typeJournal Paper
    journal volume73
    journal issue1
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-15-0038.1
    journal fristpage25
    journal lastpage40
    treeJournal of the Atmospheric Sciences:;2015:;Volume( 073 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian