YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity of Precipitation Accumulation in Elevated Convective Systems to Small Changes in Low-Level Moisture

    Source: Journal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 006::page 2507
    Author:
    Schumacher, Russ S.
    DOI: 10.1175/JAS-D-14-0389.1
    Publisher: American Meteorological Society
    Abstract: sing a method for initiating a quasi-stationary, heavy-rain-producing elevated mesoscale convective system in an idealized numerical modeling framework, a series of experiments is conducted in which a shallow layer of drier air is introduced within the near-surface stable layer. The environment is still very moist in the experiments, with changes to the column-integrated water vapor of only 0.3%?1%. The timing and general evolution of the simulated convective systems are very similar, but rainfall accumulation at the surface is changed by a much larger fraction than the reduction in moisture, with point precipitation maxima reduced by up to 29% and domain-averaged precipitation accumulations reduced by up to 15%. The differences in precipitation are partially attributed to increases in the evaporation rate in the shallow subcloud layer, though this is found to be a secondary effect. More importantly, even though the near-surface layer has strong convective inhibition in all simulations and the convective available potential energy of the most unstable parcels is unchanged, convection is less intense in the experiments with drier subcloud layers because less air originating in that layer rises in convective updrafts. An additional experiment with a cooler near-surface layer corroborates these findings. The results from these experiments suggest that convective systems assumed to be elevated are, in fact, drawing air from near the surface unless the low levels are very stable. Considering that the moisture differences imposed here are comparable to observational uncertainties in low-level temperature and moisture, the strong sensitivity of accumulated precipitation to these quantities has implications for the predictability of extreme rainfall.
    • Download: (5.307Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity of Precipitation Accumulation in Elevated Convective Systems to Small Changes in Low-Level Moisture

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219806
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorSchumacher, Russ S.
    date accessioned2017-06-09T16:58:21Z
    date available2017-06-09T16:58:21Z
    date copyright2015/06/01
    date issued2015
    identifier issn0022-4928
    identifier otherams-77267.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219806
    description abstractsing a method for initiating a quasi-stationary, heavy-rain-producing elevated mesoscale convective system in an idealized numerical modeling framework, a series of experiments is conducted in which a shallow layer of drier air is introduced within the near-surface stable layer. The environment is still very moist in the experiments, with changes to the column-integrated water vapor of only 0.3%?1%. The timing and general evolution of the simulated convective systems are very similar, but rainfall accumulation at the surface is changed by a much larger fraction than the reduction in moisture, with point precipitation maxima reduced by up to 29% and domain-averaged precipitation accumulations reduced by up to 15%. The differences in precipitation are partially attributed to increases in the evaporation rate in the shallow subcloud layer, though this is found to be a secondary effect. More importantly, even though the near-surface layer has strong convective inhibition in all simulations and the convective available potential energy of the most unstable parcels is unchanged, convection is less intense in the experiments with drier subcloud layers because less air originating in that layer rises in convective updrafts. An additional experiment with a cooler near-surface layer corroborates these findings. The results from these experiments suggest that convective systems assumed to be elevated are, in fact, drawing air from near the surface unless the low levels are very stable. Considering that the moisture differences imposed here are comparable to observational uncertainties in low-level temperature and moisture, the strong sensitivity of accumulated precipitation to these quantities has implications for the predictability of extreme rainfall.
    publisherAmerican Meteorological Society
    titleSensitivity of Precipitation Accumulation in Elevated Convective Systems to Small Changes in Low-Level Moisture
    typeJournal Paper
    journal volume72
    journal issue6
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-14-0389.1
    journal fristpage2507
    journal lastpage2524
    treeJournal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian