YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Generalizing Cloud Overlap Treatment to Include the Effect of Wind Shear

    Source: Journal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 008::page 2865
    Author:
    Di Giuseppe, Francesca
    ,
    Tompkins, Adrian M.
    DOI: 10.1175/JAS-D-14-0277.1
    Publisher: American Meteorological Society
    Abstract: ix months of CloudSat and CALIPSO observations have been divided into over 8 million cloud scenes and collocated with ECMWF wind analyses to identify an empirical relationship between cloud overlap and wind shear for use in atmospheric models. For vertically continuous cloudy layers, cloud decorrelates from maximum toward random overlap as the layer separation distance increases, and the authors demonstrate a systematic impact of wind shear on the resulting decorrelation length scale. As expected, cloud decorrelates over smaller distances as wind shear increases. A simple, empirical linear fit parameterization is suggested that is straightforward to add to existing radiation schemes, although it is shown that the parameters are quite sensitive to the processing details of the cloud mask data and also to the fitting method used. The wind shear?overlap dependency is implemented in the radiation scheme of the ECMWF Integrated Forecast System. It has a similar-magnitude impact on the radiative budget as that of switching from a fixed decorrelation length scale to the latitude-dependent length scale presently used in the operational model, altering the zonal-mean, top-of-atmosphere, equator-to-midlatitude gradient of shortwave radiation by approximately 2 W m?2.
    • Download: (1.410Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Generalizing Cloud Overlap Treatment to Include the Effect of Wind Shear

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219719
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorDi Giuseppe, Francesca
    contributor authorTompkins, Adrian M.
    date accessioned2017-06-09T16:58:01Z
    date available2017-06-09T16:58:01Z
    date copyright2015/08/01
    date issued2015
    identifier issn0022-4928
    identifier otherams-77189.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219719
    description abstractix months of CloudSat and CALIPSO observations have been divided into over 8 million cloud scenes and collocated with ECMWF wind analyses to identify an empirical relationship between cloud overlap and wind shear for use in atmospheric models. For vertically continuous cloudy layers, cloud decorrelates from maximum toward random overlap as the layer separation distance increases, and the authors demonstrate a systematic impact of wind shear on the resulting decorrelation length scale. As expected, cloud decorrelates over smaller distances as wind shear increases. A simple, empirical linear fit parameterization is suggested that is straightforward to add to existing radiation schemes, although it is shown that the parameters are quite sensitive to the processing details of the cloud mask data and also to the fitting method used. The wind shear?overlap dependency is implemented in the radiation scheme of the ECMWF Integrated Forecast System. It has a similar-magnitude impact on the radiative budget as that of switching from a fixed decorrelation length scale to the latitude-dependent length scale presently used in the operational model, altering the zonal-mean, top-of-atmosphere, equator-to-midlatitude gradient of shortwave radiation by approximately 2 W m?2.
    publisherAmerican Meteorological Society
    titleGeneralizing Cloud Overlap Treatment to Include the Effect of Wind Shear
    typeJournal Paper
    journal volume72
    journal issue8
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-14-0277.1
    journal fristpage2865
    journal lastpage2876
    treeJournal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian