YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Turbulent Mixing in Shallow Trade Wind Cumuli: Dependence on Cloud Life Cycle

    Source: Journal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 004::page 1447
    Author:
    Schmeissner, T.
    ,
    Shaw, R. A.
    ,
    Ditas, J.
    ,
    Stratmann, F.
    ,
    Wendisch, M.
    ,
    Siebert, H.
    DOI: 10.1175/JAS-D-14-0230.1
    Publisher: American Meteorological Society
    Abstract: elicopter-borne observations of the impact of turbulent mixing and cloud microphysical properties in shallow trade wind cumuli are presented. The measurements were collected during the Cloud, Aerosol, Radiation and Turbulence in the Trade Wind Regime over Barbados (CARRIBA) project. Basic meteorological parameters (3D wind vector, air temperature, and relative humidity), cloud condensation nuclei concentrations, and cloud microphysical parameters (droplet number, size distribution, and liquid water content) are measured by the Airborne Cloud Turbulence Observation System (ACTOS), which is fixed by a 160-m-long rope underneath a helicopter flying with a true airspeed of approximately 20 m s?1. Clouds at different evolutionary stages were sampled. A total of 300 clouds are classified into actively growing, decelerated, and dissolving clouds. The mixing process of these cloud categories is investigated by correlating the cloud droplet number concentration and cubed droplet mean volume diameter. A significant tendency to more inhomogeneous mixing with increasing cloud lifetime is observed. Furthermore, the mixing process and its effects on droplet number concentration, droplet size, and cloud liquid water content are statistically evaluated. It is found that, in dissolving clouds, liquid water content and droplet number concentration are decreased by about 50% compared to actively growing clouds. Conversely, the droplet size remains almost constant, which can be attributed to the existence of a humid shell around the cloud that prevents cloud droplets from rapid evaporation after entrainment of premoistened air. Moreover, signs of secondary activation are found, which results in a more difficult interpretation of observed mixing diagrams.
    • Download: (1.761Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Turbulent Mixing in Shallow Trade Wind Cumuli: Dependence on Cloud Life Cycle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219684
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorSchmeissner, T.
    contributor authorShaw, R. A.
    contributor authorDitas, J.
    contributor authorStratmann, F.
    contributor authorWendisch, M.
    contributor authorSiebert, H.
    date accessioned2017-06-09T16:57:56Z
    date available2017-06-09T16:57:56Z
    date copyright2015/04/01
    date issued2015
    identifier issn0022-4928
    identifier otherams-77157.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219684
    description abstractelicopter-borne observations of the impact of turbulent mixing and cloud microphysical properties in shallow trade wind cumuli are presented. The measurements were collected during the Cloud, Aerosol, Radiation and Turbulence in the Trade Wind Regime over Barbados (CARRIBA) project. Basic meteorological parameters (3D wind vector, air temperature, and relative humidity), cloud condensation nuclei concentrations, and cloud microphysical parameters (droplet number, size distribution, and liquid water content) are measured by the Airborne Cloud Turbulence Observation System (ACTOS), which is fixed by a 160-m-long rope underneath a helicopter flying with a true airspeed of approximately 20 m s?1. Clouds at different evolutionary stages were sampled. A total of 300 clouds are classified into actively growing, decelerated, and dissolving clouds. The mixing process of these cloud categories is investigated by correlating the cloud droplet number concentration and cubed droplet mean volume diameter. A significant tendency to more inhomogeneous mixing with increasing cloud lifetime is observed. Furthermore, the mixing process and its effects on droplet number concentration, droplet size, and cloud liquid water content are statistically evaluated. It is found that, in dissolving clouds, liquid water content and droplet number concentration are decreased by about 50% compared to actively growing clouds. Conversely, the droplet size remains almost constant, which can be attributed to the existence of a humid shell around the cloud that prevents cloud droplets from rapid evaporation after entrainment of premoistened air. Moreover, signs of secondary activation are found, which results in a more difficult interpretation of observed mixing diagrams.
    publisherAmerican Meteorological Society
    titleTurbulent Mixing in Shallow Trade Wind Cumuli: Dependence on Cloud Life Cycle
    typeJournal Paper
    journal volume72
    journal issue4
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-14-0230.1
    journal fristpage1447
    journal lastpage1465
    treeJournal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian