Turbulent Mixing in Shallow Trade Wind Cumuli: Dependence on Cloud Life CycleSource: Journal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 004::page 1447DOI: 10.1175/JAS-D-14-0230.1Publisher: American Meteorological Society
Abstract: elicopter-borne observations of the impact of turbulent mixing and cloud microphysical properties in shallow trade wind cumuli are presented. The measurements were collected during the Cloud, Aerosol, Radiation and Turbulence in the Trade Wind Regime over Barbados (CARRIBA) project. Basic meteorological parameters (3D wind vector, air temperature, and relative humidity), cloud condensation nuclei concentrations, and cloud microphysical parameters (droplet number, size distribution, and liquid water content) are measured by the Airborne Cloud Turbulence Observation System (ACTOS), which is fixed by a 160-m-long rope underneath a helicopter flying with a true airspeed of approximately 20 m s?1. Clouds at different evolutionary stages were sampled. A total of 300 clouds are classified into actively growing, decelerated, and dissolving clouds. The mixing process of these cloud categories is investigated by correlating the cloud droplet number concentration and cubed droplet mean volume diameter. A significant tendency to more inhomogeneous mixing with increasing cloud lifetime is observed. Furthermore, the mixing process and its effects on droplet number concentration, droplet size, and cloud liquid water content are statistically evaluated. It is found that, in dissolving clouds, liquid water content and droplet number concentration are decreased by about 50% compared to actively growing clouds. Conversely, the droplet size remains almost constant, which can be attributed to the existence of a humid shell around the cloud that prevents cloud droplets from rapid evaporation after entrainment of premoistened air. Moreover, signs of secondary activation are found, which results in a more difficult interpretation of observed mixing diagrams.
|
Collections
Show full item record
contributor author | Schmeissner, T. | |
contributor author | Shaw, R. A. | |
contributor author | Ditas, J. | |
contributor author | Stratmann, F. | |
contributor author | Wendisch, M. | |
contributor author | Siebert, H. | |
date accessioned | 2017-06-09T16:57:56Z | |
date available | 2017-06-09T16:57:56Z | |
date copyright | 2015/04/01 | |
date issued | 2015 | |
identifier issn | 0022-4928 | |
identifier other | ams-77157.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4219684 | |
description abstract | elicopter-borne observations of the impact of turbulent mixing and cloud microphysical properties in shallow trade wind cumuli are presented. The measurements were collected during the Cloud, Aerosol, Radiation and Turbulence in the Trade Wind Regime over Barbados (CARRIBA) project. Basic meteorological parameters (3D wind vector, air temperature, and relative humidity), cloud condensation nuclei concentrations, and cloud microphysical parameters (droplet number, size distribution, and liquid water content) are measured by the Airborne Cloud Turbulence Observation System (ACTOS), which is fixed by a 160-m-long rope underneath a helicopter flying with a true airspeed of approximately 20 m s?1. Clouds at different evolutionary stages were sampled. A total of 300 clouds are classified into actively growing, decelerated, and dissolving clouds. The mixing process of these cloud categories is investigated by correlating the cloud droplet number concentration and cubed droplet mean volume diameter. A significant tendency to more inhomogeneous mixing with increasing cloud lifetime is observed. Furthermore, the mixing process and its effects on droplet number concentration, droplet size, and cloud liquid water content are statistically evaluated. It is found that, in dissolving clouds, liquid water content and droplet number concentration are decreased by about 50% compared to actively growing clouds. Conversely, the droplet size remains almost constant, which can be attributed to the existence of a humid shell around the cloud that prevents cloud droplets from rapid evaporation after entrainment of premoistened air. Moreover, signs of secondary activation are found, which results in a more difficult interpretation of observed mixing diagrams. | |
publisher | American Meteorological Society | |
title | Turbulent Mixing in Shallow Trade Wind Cumuli: Dependence on Cloud Life Cycle | |
type | Journal Paper | |
journal volume | 72 | |
journal issue | 4 | |
journal title | Journal of the Atmospheric Sciences | |
identifier doi | 10.1175/JAS-D-14-0230.1 | |
journal fristpage | 1447 | |
journal lastpage | 1465 | |
tree | Journal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 004 | |
contenttype | Fulltext |