YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Atmospheric Response to Weak Sea Surface Temperature Fronts

    Source: Journal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 009::page 3356
    Author:
    Schneider, Niklas
    ,
    Qiu, Bo
    DOI: 10.1175/JAS-D-14-0212.1
    Publisher: American Meteorological Society
    Abstract: he response of the atmospheric boundary layer to fronts of sea surface temperature (SST) is characterized by correlations between wind stress divergence and the downwind component of the SST gradient and between the wind stress curl and the crosswind component of the SST gradient. The associated regression (or coupling) coefficients for the wind stress divergence are consistently larger than those for the wind stress curl. To explore the underlying physics, the authors introduce a linearized model of the atmospheric boundary layer response to SST-induced modulations of boundary layer hydrostatic pressure and vertical mixing in the presence of advection by a background Ekman spiral. Model solutions are a strong function of the SST scale and background advection and recover observed characteristics. The coupling coefficients for wind stress divergence and curl are governed by distinct physics. Wind stress divergence results from either large-scale winds crossing the front or from a thermally direct, cross-frontal circulation. Wind stress curl, expected to be largest when winds are parallel to SST fronts, is reduced through geostrophic spindown and thereby yields weaker coupling coefficients.
    • Download: (16.49Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Atmospheric Response to Weak Sea Surface Temperature Fronts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219669
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorSchneider, Niklas
    contributor authorQiu, Bo
    date accessioned2017-06-09T16:57:52Z
    date available2017-06-09T16:57:52Z
    date copyright2015/09/01
    date issued2015
    identifier issn0022-4928
    identifier otherams-77143.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219669
    description abstracthe response of the atmospheric boundary layer to fronts of sea surface temperature (SST) is characterized by correlations between wind stress divergence and the downwind component of the SST gradient and between the wind stress curl and the crosswind component of the SST gradient. The associated regression (or coupling) coefficients for the wind stress divergence are consistently larger than those for the wind stress curl. To explore the underlying physics, the authors introduce a linearized model of the atmospheric boundary layer response to SST-induced modulations of boundary layer hydrostatic pressure and vertical mixing in the presence of advection by a background Ekman spiral. Model solutions are a strong function of the SST scale and background advection and recover observed characteristics. The coupling coefficients for wind stress divergence and curl are governed by distinct physics. Wind stress divergence results from either large-scale winds crossing the front or from a thermally direct, cross-frontal circulation. Wind stress curl, expected to be largest when winds are parallel to SST fronts, is reduced through geostrophic spindown and thereby yields weaker coupling coefficients.
    publisherAmerican Meteorological Society
    titleThe Atmospheric Response to Weak Sea Surface Temperature Fronts
    typeJournal Paper
    journal volume72
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-14-0212.1
    journal fristpage3356
    journal lastpage3377
    treeJournal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian