YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seasonal Variability of the Polar Stratospheric Vortex in an Idealized AGCM with Varying Tropospheric Wave Forcing

    Source: Journal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 006::page 2248
    Author:
    Sheshadri, Aditi
    ,
    Plumb, R. Alan
    ,
    Gerber, Edwin P.
    DOI: 10.1175/JAS-D-14-0191.1
    Publisher: American Meteorological Society
    Abstract: he seasonal variability of the polar stratospheric vortex is studied in a simplified AGCM driven by specified equilibrium temperature distributions. Seasonal variations in equilibrium temperature are imposed in the stratosphere only, enabling the study of stratosphere?troposphere coupling on seasonal time scales, without the complication of an internal tropospheric seasonal cycle. The model is forced with different shapes and amplitudes of simple bottom topography, resulting in a range of stratospheric climates. The effect of these different kinds of topography on the seasonal variability of the strength of the polar vortex, the average timing and variability in timing of the final breakup of the vortex (final warming events), the conditions of occurrence and frequency of midwinter warming events, and the impact of the stratospheric seasonal cycle on the troposphere are explored. The inclusion of wavenumber-1 and wavenumber-2 topographies results in very different stratospheric seasonal variability. Hemispheric differences in stratospheric seasonal variability are recovered in the model with appropriate choices of wave-2 topography. In the model experiment with a realistic Northern Hemisphere?like frequency of midwinter warming events, the distribution of the intervals between these events suggests that the model has no year-to-year memory. When forced with wave-1 topography, the gross features of seasonal variability are similar to those forced with wave-2 topography, but the dependence on forcing magnitude is weaker. Further, the frequency of major warming events has a nonmonotonic dependence on forcing magnitude and never reaches the frequency observed in the Northern Hemisphere.
    • Download: (3.207Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seasonal Variability of the Polar Stratospheric Vortex in an Idealized AGCM with Varying Tropospheric Wave Forcing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219651
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorSheshadri, Aditi
    contributor authorPlumb, R. Alan
    contributor authorGerber, Edwin P.
    date accessioned2017-06-09T16:57:48Z
    date available2017-06-09T16:57:48Z
    date copyright2015/06/01
    date issued2015
    identifier issn0022-4928
    identifier otherams-77127.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219651
    description abstracthe seasonal variability of the polar stratospheric vortex is studied in a simplified AGCM driven by specified equilibrium temperature distributions. Seasonal variations in equilibrium temperature are imposed in the stratosphere only, enabling the study of stratosphere?troposphere coupling on seasonal time scales, without the complication of an internal tropospheric seasonal cycle. The model is forced with different shapes and amplitudes of simple bottom topography, resulting in a range of stratospheric climates. The effect of these different kinds of topography on the seasonal variability of the strength of the polar vortex, the average timing and variability in timing of the final breakup of the vortex (final warming events), the conditions of occurrence and frequency of midwinter warming events, and the impact of the stratospheric seasonal cycle on the troposphere are explored. The inclusion of wavenumber-1 and wavenumber-2 topographies results in very different stratospheric seasonal variability. Hemispheric differences in stratospheric seasonal variability are recovered in the model with appropriate choices of wave-2 topography. In the model experiment with a realistic Northern Hemisphere?like frequency of midwinter warming events, the distribution of the intervals between these events suggests that the model has no year-to-year memory. When forced with wave-1 topography, the gross features of seasonal variability are similar to those forced with wave-2 topography, but the dependence on forcing magnitude is weaker. Further, the frequency of major warming events has a nonmonotonic dependence on forcing magnitude and never reaches the frequency observed in the Northern Hemisphere.
    publisherAmerican Meteorological Society
    titleSeasonal Variability of the Polar Stratospheric Vortex in an Idealized AGCM with Varying Tropospheric Wave Forcing
    typeJournal Paper
    journal volume72
    journal issue6
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-14-0191.1
    journal fristpage2248
    journal lastpage2266
    treeJournal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian