YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vortex Encounter Rates with Fixed Barometer Stations: Comparison with Visual Dust Devil Counts and Large-Eddy Simulations

    Source: Journal of the Atmospheric Sciences:;2014:;Volume( 071 ):;issue: 012::page 4461
    Author:
    Lorenz, Ralph D.
    DOI: 10.1175/JAS-D-14-0138.1
    Publisher: American Meteorological Society
    Abstract: phenomenological model is developed wherein vortices are introduced at random into a virtual arena with specified distributions of diameter, core pressure drop, longevity, and translation speed, and the pressure history at a fixed station is generated using an analytic model of vortex structure. Only a subset of the vortices present are detected as temporary pressure drops, and the observed peak pressure-drop distribution has a shallower slope than the vortex-core pressure drops. Field studies indicate a detection rate of about two vortex events per day under favorable conditions for a threshold of 0.2 mb (1 mb = 1 hPa): this encounter rate and the observed falloff of events with increasing pressure drop can be reproduced in the model with approximately 300 vortices per square kilometer per day?rather more than the highest visual dust devil counts of approximately 100 devils per square kilometer per day. This difference can be reconciled if dust lifting typically only occurs in the field above a threshold core pressure drop of about 0.3 mb, consistent with observed laboratory pressure thresholds. The vortex population modeled to reproduce field results is concordant with recent high-resolution large-eddy simulations, which produce some thousands of 0.04?0.1-mb vortices per square kilometer per day, suggesting that these accurately reproduce the character of the strongly heated desert boundary layer. The amplitude and duration statistics of observed pressure drops suggest large dust devils may preferentially be associated with low winds.
    • Download: (1015.Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vortex Encounter Rates with Fixed Barometer Stations: Comparison with Visual Dust Devil Counts and Large-Eddy Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219616
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorLorenz, Ralph D.
    date accessioned2017-06-09T16:57:40Z
    date available2017-06-09T16:57:40Z
    date copyright2014/12/01
    date issued2014
    identifier issn0022-4928
    identifier otherams-77096.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219616
    description abstractphenomenological model is developed wherein vortices are introduced at random into a virtual arena with specified distributions of diameter, core pressure drop, longevity, and translation speed, and the pressure history at a fixed station is generated using an analytic model of vortex structure. Only a subset of the vortices present are detected as temporary pressure drops, and the observed peak pressure-drop distribution has a shallower slope than the vortex-core pressure drops. Field studies indicate a detection rate of about two vortex events per day under favorable conditions for a threshold of 0.2 mb (1 mb = 1 hPa): this encounter rate and the observed falloff of events with increasing pressure drop can be reproduced in the model with approximately 300 vortices per square kilometer per day?rather more than the highest visual dust devil counts of approximately 100 devils per square kilometer per day. This difference can be reconciled if dust lifting typically only occurs in the field above a threshold core pressure drop of about 0.3 mb, consistent with observed laboratory pressure thresholds. The vortex population modeled to reproduce field results is concordant with recent high-resolution large-eddy simulations, which produce some thousands of 0.04?0.1-mb vortices per square kilometer per day, suggesting that these accurately reproduce the character of the strongly heated desert boundary layer. The amplitude and duration statistics of observed pressure drops suggest large dust devils may preferentially be associated with low winds.
    publisherAmerican Meteorological Society
    titleVortex Encounter Rates with Fixed Barometer Stations: Comparison with Visual Dust Devil Counts and Large-Eddy Simulations
    typeJournal Paper
    journal volume71
    journal issue12
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-14-0138.1
    journal fristpage4461
    journal lastpage4472
    treeJournal of the Atmospheric Sciences:;2014:;Volume( 071 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian