YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stochastic Parameterization of Convective Area Fractions with a Multicloud Model Inferred from Observational Data

    Source: Journal of the Atmospheric Sciences:;2014:;Volume( 072 ):;issue: 002::page 854
    Author:
    Dorrestijn, Jesse
    ,
    Crommelin, Daan T.
    ,
    Siebesma, A. Pier
    ,
    Jonker, Harmen J. J.
    ,
    Jakob, Christian
    DOI: 10.1175/JAS-D-14-0110.1
    Publisher: American Meteorological Society
    Abstract: bservational data of rainfall from a rain radar in Darwin, Australia, are combined with data defining the large-scale dynamic and thermodynamic state of the atmosphere around Darwin to develop a multicloud model based on a stochastic method using conditional Markov chains. The authors assign the radar data to clear sky, moderate congestus, strong congestus, deep convective, or stratiform clouds and estimate transition probabilities used by Markov chains that switch between the cloud types and yield cloud-type area fractions. Cross-correlation analysis shows that the mean vertical velocity is an important indicator of deep convection. Further, it is shown that, if conditioned on the mean vertical velocity, the Markov chains produce fractions comparable to the observations. The stochastic nature of the approach turns out to be essential for the correct production of area fractions. The stochastic multicloud model can easily be coupled to existing moist convection parameterization schemes used in general circulation models.
    • Download: (1.679Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stochastic Parameterization of Convective Area Fractions with a Multicloud Model Inferred from Observational Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219597
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorDorrestijn, Jesse
    contributor authorCrommelin, Daan T.
    contributor authorSiebesma, A. Pier
    contributor authorJonker, Harmen J. J.
    contributor authorJakob, Christian
    date accessioned2017-06-09T16:57:34Z
    date available2017-06-09T16:57:34Z
    date copyright2015/02/01
    date issued2014
    identifier issn0022-4928
    identifier otherams-77079.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219597
    description abstractbservational data of rainfall from a rain radar in Darwin, Australia, are combined with data defining the large-scale dynamic and thermodynamic state of the atmosphere around Darwin to develop a multicloud model based on a stochastic method using conditional Markov chains. The authors assign the radar data to clear sky, moderate congestus, strong congestus, deep convective, or stratiform clouds and estimate transition probabilities used by Markov chains that switch between the cloud types and yield cloud-type area fractions. Cross-correlation analysis shows that the mean vertical velocity is an important indicator of deep convection. Further, it is shown that, if conditioned on the mean vertical velocity, the Markov chains produce fractions comparable to the observations. The stochastic nature of the approach turns out to be essential for the correct production of area fractions. The stochastic multicloud model can easily be coupled to existing moist convection parameterization schemes used in general circulation models.
    publisherAmerican Meteorological Society
    titleStochastic Parameterization of Convective Area Fractions with a Multicloud Model Inferred from Observational Data
    typeJournal Paper
    journal volume72
    journal issue2
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-14-0110.1
    journal fristpage854
    journal lastpage869
    treeJournal of the Atmospheric Sciences:;2014:;Volume( 072 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian