YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Anelastic and Compressible Simulation of Moist Deep Convection

    Source: Journal of the Atmospheric Sciences:;2014:;Volume( 071 ):;issue: 010::page 3767
    Author:
    Kurowski, Marcin J.
    ,
    Grabowski, Wojciech W.
    ,
    Smolarkiewicz, Piotr K.
    DOI: 10.1175/JAS-D-14-0017.1
    Publisher: American Meteorological Society
    Abstract: nelastic and compressible solutions are compared for two moist deep convection benchmarks, a two-dimensional thermal rising in a saturated moist-neutral deep atmosphere, and a three-dimensional supercell formation. In the anelastic model, the pressure applied in the moist thermodynamics comes from either the environmental hydrostatically balanced pressure profile in the standard anelastic model or is combined with nonhydrostatic perturbations from the elliptic pressure solver in the generalized anelastic model. The compressible model applies either an explicit acoustic-mode-resolving scheme requiring short time steps or a novel implicit scheme allowing time steps as large as those used in the anelastic model. The consistency of the unified numerical framework facilitates direct comparisons of results obtained with anelastic and compressible models.The anelastic and compressible rising thermal solutions agree not only with each other but also with the previously published compressible benchmark solution based on the comprehensive representation of moist dynamics and thermodynamics. In contrast to earlier works focusing on the formulation of moist thermodynamics, the compatibility of the initial conditions is emphasized and its impact on the benchmark solutions is documented. The anelastic and compressible supercell solutions agree well for various versions of anelastic and compressible models even for cloud updrafts reaching 15% of the speed of sound. The nonhydrostatic pressure perturbations turn out to have a negligible impact on the moist dynamics. Numerical and physical details of the simulations, such as the advection scheme, spatial and temporal resolution, or parameters of the subgrid-scale turbulence, have a more significant effect on the solutions than the particular equation system applied.
    • Download: (2.180Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Anelastic and Compressible Simulation of Moist Deep Convection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219528
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorKurowski, Marcin J.
    contributor authorGrabowski, Wojciech W.
    contributor authorSmolarkiewicz, Piotr K.
    date accessioned2017-06-09T16:57:21Z
    date available2017-06-09T16:57:21Z
    date copyright2014/10/01
    date issued2014
    identifier issn0022-4928
    identifier otherams-77016.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219528
    description abstractnelastic and compressible solutions are compared for two moist deep convection benchmarks, a two-dimensional thermal rising in a saturated moist-neutral deep atmosphere, and a three-dimensional supercell formation. In the anelastic model, the pressure applied in the moist thermodynamics comes from either the environmental hydrostatically balanced pressure profile in the standard anelastic model or is combined with nonhydrostatic perturbations from the elliptic pressure solver in the generalized anelastic model. The compressible model applies either an explicit acoustic-mode-resolving scheme requiring short time steps or a novel implicit scheme allowing time steps as large as those used in the anelastic model. The consistency of the unified numerical framework facilitates direct comparisons of results obtained with anelastic and compressible models.The anelastic and compressible rising thermal solutions agree not only with each other but also with the previously published compressible benchmark solution based on the comprehensive representation of moist dynamics and thermodynamics. In contrast to earlier works focusing on the formulation of moist thermodynamics, the compatibility of the initial conditions is emphasized and its impact on the benchmark solutions is documented. The anelastic and compressible supercell solutions agree well for various versions of anelastic and compressible models even for cloud updrafts reaching 15% of the speed of sound. The nonhydrostatic pressure perturbations turn out to have a negligible impact on the moist dynamics. Numerical and physical details of the simulations, such as the advection scheme, spatial and temporal resolution, or parameters of the subgrid-scale turbulence, have a more significant effect on the solutions than the particular equation system applied.
    publisherAmerican Meteorological Society
    titleAnelastic and Compressible Simulation of Moist Deep Convection
    typeJournal Paper
    journal volume71
    journal issue10
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-14-0017.1
    journal fristpage3767
    journal lastpage3787
    treeJournal of the Atmospheric Sciences:;2014:;Volume( 071 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian