YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    CCN and Vertical Velocity Influences on Droplet Concentrations and Supersaturations in Clean and Polluted Stratus Clouds

    Source: Journal of the Atmospheric Sciences:;2013:;Volume( 071 ):;issue: 001::page 312
    Author:
    Hudson, James G.
    ,
    Noble, Stephen
    DOI: 10.1175/JAS-D-13-086.1
    Publisher: American Meteorological Society
    Abstract: loud microphysics and cloud condensation nuclei (CCN) measurements from two marine stratus cloud projects are presented and analyzed. Results show that the increase of cloud droplet concentrations Nc with CCN concentrations NCCN rolls off for NCCN at 1% supersaturation (S)N1% above 400 cm?3. Moreover, at such high concentrations Nc was not so well correlated with NCCN but tended to be more closely related to vertical velocity W or variations of W (σw). This changeover from predominate Nc dependence on NCCN to Nc dependence on W or σw is due to the higher slope k of CCN spectra at lower S, which is made more relevant by the lower cloud S that is forced by higher NCCN. Higher k makes greater influence of W or σw variations than NCCN variations on Nc. This changeover at high NCCN thus seems to limit the indirect aerosol effect (IAE).On the other hand, in clean-air stratus cloud S often exceeded 1% and decreased to slightly less than 0.1% in polluted conditions. This means that smaller CCN [those with higher critical S (Sc)], which are generally more numerous than larger CCN (lower Sc), are capable of producing stratus cloud droplets, especially when they are advected into clean marine air masses where they can induce IAE. Positive correlations between turbulence σw and NCCN are attributed to greater differential latent heat exchange of smaller more numerous cloud droplets that evaporate more readily. Such apparent CCN influences on cloud dynamics tend to support trends that oppose conventional IAE, that is, less rather than greater cloudiness in polluted environments.
    • Download: (1.644Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      CCN and Vertical Velocity Influences on Droplet Concentrations and Supersaturations in Clean and Polluted Stratus Clouds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219507
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHudson, James G.
    contributor authorNoble, Stephen
    date accessioned2017-06-09T16:57:17Z
    date available2017-06-09T16:57:17Z
    date copyright2014/01/01
    date issued2013
    identifier issn0022-4928
    identifier otherams-76999.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219507
    description abstractloud microphysics and cloud condensation nuclei (CCN) measurements from two marine stratus cloud projects are presented and analyzed. Results show that the increase of cloud droplet concentrations Nc with CCN concentrations NCCN rolls off for NCCN at 1% supersaturation (S)N1% above 400 cm?3. Moreover, at such high concentrations Nc was not so well correlated with NCCN but tended to be more closely related to vertical velocity W or variations of W (σw). This changeover from predominate Nc dependence on NCCN to Nc dependence on W or σw is due to the higher slope k of CCN spectra at lower S, which is made more relevant by the lower cloud S that is forced by higher NCCN. Higher k makes greater influence of W or σw variations than NCCN variations on Nc. This changeover at high NCCN thus seems to limit the indirect aerosol effect (IAE).On the other hand, in clean-air stratus cloud S often exceeded 1% and decreased to slightly less than 0.1% in polluted conditions. This means that smaller CCN [those with higher critical S (Sc)], which are generally more numerous than larger CCN (lower Sc), are capable of producing stratus cloud droplets, especially when they are advected into clean marine air masses where they can induce IAE. Positive correlations between turbulence σw and NCCN are attributed to greater differential latent heat exchange of smaller more numerous cloud droplets that evaporate more readily. Such apparent CCN influences on cloud dynamics tend to support trends that oppose conventional IAE, that is, less rather than greater cloudiness in polluted environments.
    publisherAmerican Meteorological Society
    titleCCN and Vertical Velocity Influences on Droplet Concentrations and Supersaturations in Clean and Polluted Stratus Clouds
    typeJournal Paper
    journal volume71
    journal issue1
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-13-086.1
    journal fristpage312
    journal lastpage331
    treeJournal of the Atmospheric Sciences:;2013:;Volume( 071 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian