YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Microphysical Characteristics of Overshooting Convection from Polarimetric Radar Observations

    Source: Journal of the Atmospheric Sciences:;2014:;Volume( 072 ):;issue: 002::page 870
    Author:
    Homeyer, Cameron R.
    ,
    Kumjian, Matthew R.
    DOI: 10.1175/JAS-D-13-0388.1
    Publisher: American Meteorological Society
    Abstract: he authors present observations of the microphysical characteristics of deep convection that overshoots the altitude of the extratropical tropopause from analysis of the polarimetric radar variables of radar reflectivity factor at horizontal polarization ZH, differential reflectivity ZDR, and specific differential phase KDP. Identified overshooting convective storms are separated by their organization and intensity into three classifications: organized convection, discrete ordinary convection, and discrete supercell convection. Composite analysis of identified storms for each classification reveals microphysical features similar to those found in previous studies of deep convection, with deep columns of highly positive ZDR and KDP representing lofting of liquid hydrometeors within the convective updraft and above the melting level. In addition, organized and discrete supercell classifications show distinct near-zero ZDR minima aligned horizontally with and at altitudes higher than the updraft column features, likely indicative of the frequent presence of large hail in each case. Composites for organized convective systems show a similar ZDR minimum throughout the portion of the convective core that is overshooting the tropopause, corresponding to ZH in the range of 15?30 dBZ and negative KDP observations, in agreement with the scattering properties of small hail and/or lump or conical graupel. Additional analyses of the evolution of overshooting storms reveals that the ZDR minima indicative of hail in the middle and upper troposphere and graupel in the overshooting top are associated with the mature and decaying stages of overshooting, respectively, supporting their inferred contributions to the observed polarimetric fields.
    • Download: (3.725Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Microphysical Characteristics of Overshooting Convection from Polarimetric Radar Observations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219456
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHomeyer, Cameron R.
    contributor authorKumjian, Matthew R.
    date accessioned2017-06-09T16:57:05Z
    date available2017-06-09T16:57:05Z
    date copyright2015/02/01
    date issued2014
    identifier issn0022-4928
    identifier otherams-76952.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219456
    description abstracthe authors present observations of the microphysical characteristics of deep convection that overshoots the altitude of the extratropical tropopause from analysis of the polarimetric radar variables of radar reflectivity factor at horizontal polarization ZH, differential reflectivity ZDR, and specific differential phase KDP. Identified overshooting convective storms are separated by their organization and intensity into three classifications: organized convection, discrete ordinary convection, and discrete supercell convection. Composite analysis of identified storms for each classification reveals microphysical features similar to those found in previous studies of deep convection, with deep columns of highly positive ZDR and KDP representing lofting of liquid hydrometeors within the convective updraft and above the melting level. In addition, organized and discrete supercell classifications show distinct near-zero ZDR minima aligned horizontally with and at altitudes higher than the updraft column features, likely indicative of the frequent presence of large hail in each case. Composites for organized convective systems show a similar ZDR minimum throughout the portion of the convective core that is overshooting the tropopause, corresponding to ZH in the range of 15?30 dBZ and negative KDP observations, in agreement with the scattering properties of small hail and/or lump or conical graupel. Additional analyses of the evolution of overshooting storms reveals that the ZDR minima indicative of hail in the middle and upper troposphere and graupel in the overshooting top are associated with the mature and decaying stages of overshooting, respectively, supporting their inferred contributions to the observed polarimetric fields.
    publisherAmerican Meteorological Society
    titleMicrophysical Characteristics of Overshooting Convection from Polarimetric Radar Observations
    typeJournal Paper
    journal volume72
    journal issue2
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-13-0388.1
    journal fristpage870
    journal lastpage891
    treeJournal of the Atmospheric Sciences:;2014:;Volume( 072 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian