YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Relative Humidity in the Troposphere with AIRS

    Source: Journal of the Atmospheric Sciences:;2014:;Volume( 071 ):;issue: 007::page 2516
    Author:
    Ruzmaikin, Alexander
    ,
    Aumann, Hartmut H.
    ,
    Manning, Evan M.
    DOI: 10.1175/JAS-D-13-0363.1
    Publisher: American Meteorological Society
    Abstract: ew global satellite data from the Atmospheric Infrared Sounder (AIRS) are applied to study the tropospheric relative humidity (RH) distribution and its influence on outgoing longwave radiation (OLR) for January and July in 2003, 2007, and 2011. RH has the largest maxima over 90% in the equatorial tropopause layer in January. Maxima in July do not arise above 60%. Seasonal variations of about 20% in zonally averaged RH are observed in the equatorial region of the low troposphere, in the equatorial tropopause layer, and in the polar regions. The seasonal variability in the recent decade has increased by about 5% relative to that in 1973?88, indicating a positive trend. The observed RH profiles indicate a moist bias in the tropical and subtropical regions typically produced by the general circulation models. The new data and method of evaluating the statistical significance of bimodality confirm bimodal probability distributions of RH at large tropospheric scales, notably in the ascending branch of the Hadley circulation. Bimodality is also seen at 500?300 hPa in mid- and high latitudes. Since the drying time of the air is short compared with the mixing time of moist and dry air, the bimodality reflects the large-scale distribution of sources of moisture and the atmospheric circulation. Analysis of OLR dependence on surface temperature shows a 0.2 W m?2 K?1 difference in sensitivities between clear-sky and all-sky OLR, indicating a positive longwave cloud radiative forcing. Diagrams of the clear-sky OLR as functions of percentiles of surface temperature and relative humidity in the tropics are designed to provide a new measure of the supergreenhouse effect.
    • Download: (2.604Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Relative Humidity in the Troposphere with AIRS

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219435
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorRuzmaikin, Alexander
    contributor authorAumann, Hartmut H.
    contributor authorManning, Evan M.
    date accessioned2017-06-09T16:57:02Z
    date available2017-06-09T16:57:02Z
    date copyright2014/07/01
    date issued2014
    identifier issn0022-4928
    identifier otherams-76933.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219435
    description abstractew global satellite data from the Atmospheric Infrared Sounder (AIRS) are applied to study the tropospheric relative humidity (RH) distribution and its influence on outgoing longwave radiation (OLR) for January and July in 2003, 2007, and 2011. RH has the largest maxima over 90% in the equatorial tropopause layer in January. Maxima in July do not arise above 60%. Seasonal variations of about 20% in zonally averaged RH are observed in the equatorial region of the low troposphere, in the equatorial tropopause layer, and in the polar regions. The seasonal variability in the recent decade has increased by about 5% relative to that in 1973?88, indicating a positive trend. The observed RH profiles indicate a moist bias in the tropical and subtropical regions typically produced by the general circulation models. The new data and method of evaluating the statistical significance of bimodality confirm bimodal probability distributions of RH at large tropospheric scales, notably in the ascending branch of the Hadley circulation. Bimodality is also seen at 500?300 hPa in mid- and high latitudes. Since the drying time of the air is short compared with the mixing time of moist and dry air, the bimodality reflects the large-scale distribution of sources of moisture and the atmospheric circulation. Analysis of OLR dependence on surface temperature shows a 0.2 W m?2 K?1 difference in sensitivities between clear-sky and all-sky OLR, indicating a positive longwave cloud radiative forcing. Diagrams of the clear-sky OLR as functions of percentiles of surface temperature and relative humidity in the tropics are designed to provide a new measure of the supergreenhouse effect.
    publisherAmerican Meteorological Society
    titleRelative Humidity in the Troposphere with AIRS
    typeJournal Paper
    journal volume71
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-13-0363.1
    journal fristpage2516
    journal lastpage2533
    treeJournal of the Atmospheric Sciences:;2014:;Volume( 071 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian