YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hurricane Eyewall Evolution in a Forced Shallow-Water Model

    Source: Journal of the Atmospheric Sciences:;2014:;Volume( 071 ):;issue: 005::page 1623
    Author:
    Hendricks, Eric A.
    ,
    Schubert, Wayne H.
    ,
    Chen, Yu-Han
    ,
    Kuo, Hung-Chi
    ,
    Peng, Melinda S.
    DOI: 10.1175/JAS-D-13-0303.1
    Publisher: American Meteorological Society
    Abstract: forced shallow-water model is used to understand the role of diabatic and frictional effects in the generation, maintenance, and breakdown of the hurricane eyewall potential vorticity (PV) ring. Diabatic heating is parameterized as an annular mass sink of variable width and magnitude, and the nonlinear evolution of tropical storm?like vortices is examined under this forcing. Diabatic heating produces a strengthening and thinning PV ring in time due to the combined effects of the mass sink and radial PV advection by the induced divergent circulation. If the forcing makes the ring thin enough, then it can become dynamically unstable and break down into polygonal asymmetries or mesovortices. The onset of barotropic instability is marked by simultaneous drops in both the maximum instantaneous velocity and minimum pressure, consistent with unforced studies. However, in a sensitivity test where the heating is proportional to the relative vorticity, universal intensification occurs during barotropic instability, consistent with a recent observational study. Friction is shown to help stabilize the PV ring by reducing the eyewall PV and the unstable-mode barotropic growth rate. The radial location and structure of the heating is shown to be of critical importance for intensity variability. While it is well known that it is critical to heat in the inertially stable region inside the radius of maximum winds to spin up the hurricane vortex, these results demonstrate the additional importance of having the net heating as close as possible to the center of the storm, partially explaining why tropical cyclones with very small eyes can rapidly intensify to high peak intensities.
    • Download: (3.585Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hurricane Eyewall Evolution in a Forced Shallow-Water Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219379
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHendricks, Eric A.
    contributor authorSchubert, Wayne H.
    contributor authorChen, Yu-Han
    contributor authorKuo, Hung-Chi
    contributor authorPeng, Melinda S.
    date accessioned2017-06-09T16:56:50Z
    date available2017-06-09T16:56:50Z
    date copyright2014/05/01
    date issued2014
    identifier issn0022-4928
    identifier otherams-76883.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219379
    description abstractforced shallow-water model is used to understand the role of diabatic and frictional effects in the generation, maintenance, and breakdown of the hurricane eyewall potential vorticity (PV) ring. Diabatic heating is parameterized as an annular mass sink of variable width and magnitude, and the nonlinear evolution of tropical storm?like vortices is examined under this forcing. Diabatic heating produces a strengthening and thinning PV ring in time due to the combined effects of the mass sink and radial PV advection by the induced divergent circulation. If the forcing makes the ring thin enough, then it can become dynamically unstable and break down into polygonal asymmetries or mesovortices. The onset of barotropic instability is marked by simultaneous drops in both the maximum instantaneous velocity and minimum pressure, consistent with unforced studies. However, in a sensitivity test where the heating is proportional to the relative vorticity, universal intensification occurs during barotropic instability, consistent with a recent observational study. Friction is shown to help stabilize the PV ring by reducing the eyewall PV and the unstable-mode barotropic growth rate. The radial location and structure of the heating is shown to be of critical importance for intensity variability. While it is well known that it is critical to heat in the inertially stable region inside the radius of maximum winds to spin up the hurricane vortex, these results demonstrate the additional importance of having the net heating as close as possible to the center of the storm, partially explaining why tropical cyclones with very small eyes can rapidly intensify to high peak intensities.
    publisherAmerican Meteorological Society
    titleHurricane Eyewall Evolution in a Forced Shallow-Water Model
    typeJournal Paper
    journal volume71
    journal issue5
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-13-0303.1
    journal fristpage1623
    journal lastpage1643
    treeJournal of the Atmospheric Sciences:;2014:;Volume( 071 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian