YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multivariate Regression Reconstruction and Its Sampling Error for the Quasi-Global Annual Precipitation from 1900 to 2011

    Source: Journal of the Atmospheric Sciences:;2014:;Volume( 071 ):;issue: 009::page 3250
    Author:
    Shen, Samuel S. P.
    ,
    Tafolla, Nancy
    ,
    Smith, Thomas M.
    ,
    Arkin, Phillip A.
    DOI: 10.1175/JAS-D-13-0301.1
    Publisher: American Meteorological Society
    Abstract: his paper provides a multivariate regression method to estimate the sampling errors of the annual quasi-global (75°S?75°N) precipitation reconstructed by an empirical orthogonal function (EOF) expansion. The Global Precipitation Climatology Project (GPCP) precipitation data from 1979 to 2008 are used to calculate the EOFs. The Global Historical Climatology Network (GHCN) gridded data (1900?2011) are used to calculate the regression coefficients for reconstructions. The sampling errors of the reconstruction are analyzed in detail for different EOF modes. The reconstructed time series of the global-average annual precipitation shows a 0.024 mm day?1 (100 yr)?1 trend, which is very close to the trend derived from the mean of 25 models of phase 5 of the Coupled Model Intercomparison Project. Reconstruction examples of 1983 El Niño precipitation and 1917 La Niña precipitation demonstrate that the El Niño and La Niña precipitation patterns are well reflected in the first two EOFs. Although the validation in the GPCP period shows remarkable skill at predicting oceanic precipitation from land stations, the error pattern analysis through comparison between reconstruction and GHCN suggests the critical importance of improving oceanic measurement of precipitation.
    • Download: (2.768Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multivariate Regression Reconstruction and Its Sampling Error for the Quasi-Global Annual Precipitation from 1900 to 2011

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219376
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorShen, Samuel S. P.
    contributor authorTafolla, Nancy
    contributor authorSmith, Thomas M.
    contributor authorArkin, Phillip A.
    date accessioned2017-06-09T16:56:49Z
    date available2017-06-09T16:56:49Z
    date copyright2014/09/01
    date issued2014
    identifier issn0022-4928
    identifier otherams-76881.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219376
    description abstracthis paper provides a multivariate regression method to estimate the sampling errors of the annual quasi-global (75°S?75°N) precipitation reconstructed by an empirical orthogonal function (EOF) expansion. The Global Precipitation Climatology Project (GPCP) precipitation data from 1979 to 2008 are used to calculate the EOFs. The Global Historical Climatology Network (GHCN) gridded data (1900?2011) are used to calculate the regression coefficients for reconstructions. The sampling errors of the reconstruction are analyzed in detail for different EOF modes. The reconstructed time series of the global-average annual precipitation shows a 0.024 mm day?1 (100 yr)?1 trend, which is very close to the trend derived from the mean of 25 models of phase 5 of the Coupled Model Intercomparison Project. Reconstruction examples of 1983 El Niño precipitation and 1917 La Niña precipitation demonstrate that the El Niño and La Niña precipitation patterns are well reflected in the first two EOFs. Although the validation in the GPCP period shows remarkable skill at predicting oceanic precipitation from land stations, the error pattern analysis through comparison between reconstruction and GHCN suggests the critical importance of improving oceanic measurement of precipitation.
    publisherAmerican Meteorological Society
    titleMultivariate Regression Reconstruction and Its Sampling Error for the Quasi-Global Annual Precipitation from 1900 to 2011
    typeJournal Paper
    journal volume71
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-13-0301.1
    journal fristpage3250
    journal lastpage3268
    treeJournal of the Atmospheric Sciences:;2014:;Volume( 071 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian