YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Application of Nonlinear Local Lyapunov Vectors to Ensemble Predictions in Lorenz Systems

    Source: Journal of the Atmospheric Sciences:;2014:;Volume( 071 ):;issue: 009::page 3554
    Author:
    Feng, Jie
    ,
    Ding, Ruiqiang
    ,
    Liu, Deqiang
    ,
    Li, Jianping
    DOI: 10.1175/JAS-D-13-0270.1
    Publisher: American Meteorological Society
    Abstract: onlinear local Lyapunov vectors (NLLVs) are developed to indicate orthogonal directions in phase space with different perturbation growth rates. In particular, the first few NLLVs are considered to be an appropriate orthogonal basis for the fast-growing subspace. In this paper, the NLLV method is used to generate initial perturbations and implement ensemble forecasts in simple nonlinear models (the Lorenz63 and Lorenz96 models) to explore the validity of the NLLV method.The performance of the NLLV method is compared comprehensively and systematically with other methods such as the bred vector (BV) and the random perturbation (Monte Carlo) methods. In experiments using the Lorenz63 model, the leading NLLV (LNLLV) captured a more precise direction, and with a faster growth rate, than any individual bred vector. It may be the larger projection on fastest-growing analysis errors that causes the improved performance of the new method. Regarding the Lorenz96 model, two practical measures?namely the spread?skill relationship and the Brier score?were used to assess the reliability and resolution of these ensemble schemes. Overall, the ensemble spread of NLLVs is more consistent with the errors of the ensemble mean, which indicates the better performance of NLLVs in simulating the evolution of analysis errors. In addition, the NLLVs perform significantly better than the BVs in terms of reliability and the random perturbations in resolution.
    • Download: (484.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Application of Nonlinear Local Lyapunov Vectors to Ensemble Predictions in Lorenz Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219352
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorFeng, Jie
    contributor authorDing, Ruiqiang
    contributor authorLiu, Deqiang
    contributor authorLi, Jianping
    date accessioned2017-06-09T16:56:46Z
    date available2017-06-09T16:56:46Z
    date copyright2014/09/01
    date issued2014
    identifier issn0022-4928
    identifier otherams-76859.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219352
    description abstractonlinear local Lyapunov vectors (NLLVs) are developed to indicate orthogonal directions in phase space with different perturbation growth rates. In particular, the first few NLLVs are considered to be an appropriate orthogonal basis for the fast-growing subspace. In this paper, the NLLV method is used to generate initial perturbations and implement ensemble forecasts in simple nonlinear models (the Lorenz63 and Lorenz96 models) to explore the validity of the NLLV method.The performance of the NLLV method is compared comprehensively and systematically with other methods such as the bred vector (BV) and the random perturbation (Monte Carlo) methods. In experiments using the Lorenz63 model, the leading NLLV (LNLLV) captured a more precise direction, and with a faster growth rate, than any individual bred vector. It may be the larger projection on fastest-growing analysis errors that causes the improved performance of the new method. Regarding the Lorenz96 model, two practical measures?namely the spread?skill relationship and the Brier score?were used to assess the reliability and resolution of these ensemble schemes. Overall, the ensemble spread of NLLVs is more consistent with the errors of the ensemble mean, which indicates the better performance of NLLVs in simulating the evolution of analysis errors. In addition, the NLLVs perform significantly better than the BVs in terms of reliability and the random perturbations in resolution.
    publisherAmerican Meteorological Society
    titleThe Application of Nonlinear Local Lyapunov Vectors to Ensemble Predictions in Lorenz Systems
    typeJournal Paper
    journal volume71
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-13-0270.1
    journal fristpage3554
    journal lastpage3567
    treeJournal of the Atmospheric Sciences:;2014:;Volume( 071 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian