YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A PDF-Based Microphysics Parameterization for Shallow Cumulus Clouds

    Source: Journal of the Atmospheric Sciences:;2013:;Volume( 071 ):;issue: 003::page 1070
    Author:
    Kogan, Yefim L.
    ,
    Mechem, David B.
    DOI: 10.1175/JAS-D-13-0193.1
    Publisher: American Meteorological Society
    Abstract: nbiased calculations of microphysical process rates such as autoconversion and accretion in mesoscale numerical weather prediction models require that subgrid-scale (SGS) variability over the model grid volume be taken into account. This variability can be expressed as probability distribution functions (PDFs) of microphysical variables. Using dynamically balanced large-eddy simulation (LES) model results from a case of marine trade cumulus, the authors develop PDFs of the cloud water, droplet concentration, and rainwater variables (qc, Nc, and qr). Both 1D and 2D joint PDFs (JPDFs) are presented. The authors demonstrate that accounting for the JPDFs results in more accurate process rates for a regional-model grid size. Bias in autoconversion and accretion rates are presented, assuming different formulations of the JPDFs. Approximating the 2D PDF using a product of individual 1D PDFs overestimates the autoconversion rates by an order of magnitude, whereas neglecting the SGS variability altogether results in a drastic underestimate of the grid-mean autoconversion rate. PDF assumptions have a much smaller impact on accretion, largely because of the near-linear dependence of the variables in the accretion rate formula and the relatively weak correlation between qc and qr over the small LES grid volumes. The latter is attributed to the spatial decorrelation in the vertical between the two fields. Although the full PDFs are both height and time dependent, results suggest that fixed-in-time and fixed-in-height PDFs give an acceptable level of accuracy, especially for the crucial autoconversion calculation.
    • Download: (2.574Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A PDF-Based Microphysics Parameterization for Shallow Cumulus Clouds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219294
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorKogan, Yefim L.
    contributor authorMechem, David B.
    date accessioned2017-06-09T16:56:35Z
    date available2017-06-09T16:56:35Z
    date copyright2014/03/01
    date issued2013
    identifier issn0022-4928
    identifier otherams-76806.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219294
    description abstractnbiased calculations of microphysical process rates such as autoconversion and accretion in mesoscale numerical weather prediction models require that subgrid-scale (SGS) variability over the model grid volume be taken into account. This variability can be expressed as probability distribution functions (PDFs) of microphysical variables. Using dynamically balanced large-eddy simulation (LES) model results from a case of marine trade cumulus, the authors develop PDFs of the cloud water, droplet concentration, and rainwater variables (qc, Nc, and qr). Both 1D and 2D joint PDFs (JPDFs) are presented. The authors demonstrate that accounting for the JPDFs results in more accurate process rates for a regional-model grid size. Bias in autoconversion and accretion rates are presented, assuming different formulations of the JPDFs. Approximating the 2D PDF using a product of individual 1D PDFs overestimates the autoconversion rates by an order of magnitude, whereas neglecting the SGS variability altogether results in a drastic underestimate of the grid-mean autoconversion rate. PDF assumptions have a much smaller impact on accretion, largely because of the near-linear dependence of the variables in the accretion rate formula and the relatively weak correlation between qc and qr over the small LES grid volumes. The latter is attributed to the spatial decorrelation in the vertical between the two fields. Although the full PDFs are both height and time dependent, results suggest that fixed-in-time and fixed-in-height PDFs give an acceptable level of accuracy, especially for the crucial autoconversion calculation.
    publisherAmerican Meteorological Society
    titleA PDF-Based Microphysics Parameterization for Shallow Cumulus Clouds
    typeJournal Paper
    journal volume71
    journal issue3
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-13-0193.1
    journal fristpage1070
    journal lastpage1089
    treeJournal of the Atmospheric Sciences:;2013:;Volume( 071 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian